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ABSTRACT

Nowadays, digital technologies are being used to transform the agriculture sector into a more effective and environmentally friendly one by including technologies 
such as the Internet of Things (IoT), cloud computing, machine learning, and artificial intelligence (AI). These techniques are used to improve sustainability through 
more productive farming practices. Internet of Things is one of the most revolutionary techniques to provide improved agricultural services by efficiently managing 
and analyzing related processes. Traditional methods of a few agricultural services cannot satisfy the intricate needs of a growing population. Hence, a combination of 
multiple services or service composition is needed to meet user demand. This study addresses this problem by considering various agricultural services and integrating 
them into a composite service. The proposed work is divided into two phases. To ascertain the non-linear relationship between the cost and time of different services, 
Lagrange's interpolation model has been employed in the first phase. Subsequently, in the second phase, the Non-dominated Sorting Genetic Algorithm (NSGA-II), 
a multi-objective evolutionary algorithm, has been utilized to optimize the time and cost of services. The efficacy of the work has been evaluated by analyzing the 
results of the proposed method using the same multi-objective evolutionary technique, which has a linear relationship between the cost and time of various services.
Index Terms—Lagrange's interpolation, multi-objective, pareto solutions, service composition, smart agriculture
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I. INTRODUCTION

The primary necessity for all forms of production and the foundation of human life is agriculture. 
Every nation’s national economy is built on this sector [1]. Population growth is positively cor-
related with an increase in the need for food production. The Food and Agriculture Organization 
(FAO) projects that by 2050, there will be 9.73 billion people on the planet, and by 2100, there 
will be 11.2 billion [2]. As a result, the world’s population is growing, the climate is changing, 
and there aren’t enough natural resources to support agriculture. Because numerous barriers to 
agricultural production lower crop productivity, there is a need to concentrate on surveying land 
resources for agricultural development. Furthermore, the climate influences agricultural yield 
and quality and may make soil more susceptible to desertification [3].

Through the integration of Information and Communications Technology (ICT), the agricultural 
industry is going through a revolution to usher in a new era of agriculture. This revolution boosts 
the yield of crops, enhances crop management decisions, lessens the negative environmental 
effects of agricultural practices by using fewer chemicals, and lowers expenses for things like 
water, electricity, and fuel. It is feasible owing to the emergence of new technologies like IoT, 
cloud computing, robots, and artificial intelligence that have the potential to completely alter 
farming. These technologies have a wide range of uses [4]. In smart agriculture, robots and drones 
are being used to increase the precision of herbicide, pesticide, and fertilizer applications along 
with other smart farming equipment. Farmers employ smart agriculture technologies to culti-
vate in a more organized manner and accurately forecast the results. From planting to sowing to 
harvesting, virtually every aspect of agriculture stands to gain from the impact of technology. As 
a result, the farmer has a thorough understanding of the land, which increases the production 
process’s logic and reduces its arbitrary elements [5, 6]. Several domains and sub-domains of 
smart agriculture are shown in Fig. 1.
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Internet of Things can be defined as an interconnected system of 
smart devices and systems. These devices are utilized for sending 
and receiving vast volumes of data over an internet network with 
reduced human involvement. It is a smart and promising technology 
that provides innovative solutions that are beneficial in many fields, 
including smart homes, smart cities, smart healthcare, smart traffic 
management, smart agriculture, etc., as shown in Fig. 2 [7].

The use of IoT technology in agriculture has significantly transformed 
farming practices. With the use of IoT, all agricultural machinery and 
equipment may be connected to make predictable decisions regard-
ing irrigation requirements, fertilizers, pesticide supply, crop harvest-
ing etc. Internet of Things-based agricultural systems are applicable 
to diversified sub-domains such as smart farms, soil management, 
irrigation management, precision agriculture, animal farm monitor-
ing systems, etc. All diversified sub-domains of smart agriculture 
applications are shown in Fig. 3.

In order to make agriculture more adaptable and in line with the 
demands of a growing population, nearly all applications of smart 
agriculture are discussed in the literature. However, no research on 
the optimization of service composition in smart agriculture has 
been discovered. The term “agriculture field” refers to a variety of 
services. It is often quite challenging to meet the demands of the 
growing population utilizing only a single service because they are 
becoming more and more complex every day. Internet of Things ser-
vices fall under the categories of atomic or composite services [8]. 
An atomic service is a well-defined service that cannot be further 
separated whereas a composite service is a combination of services 
and is made from numerous different services that may give more 
extensive functionality to handle more complicated problems. For 
instance, a composite air conditioner could include temperature 
and humidity-based sensor services. A service composition method 
considers the functional characteristics of control flow and data 
flow to define a significant connection between services. Control 
flow refers to the order in which interactions happen, whereas data 
flow explains how data is transmitted between services. Any ser-
vice composition problem’s workflow can be defined in one of four 
possible ways: loop, parallel/fork, branch, and sequence [9]. They 
are becoming more and more crucial for IoT systems because they 
enable the integration of IoT services into a task to automate a par-
ticular context. A workflow that controls a room’s temperature in 
response to fluctuations in the environment, for instance, can be 
automated in a smart home. Simultaneously, in the field of smart 
agriculture, a workflow can be established to analyze data from 
harvest sensors, forecast diseases, and take appropriate action. 
This situation gives rise to the emergence of the service composi-
tion problem in smart agriculture. A generalized workflow is shown 
in Fig. 4. It commences with task-1, uses branch conditioning to 
determine whether to execute task-2 or task-3, and then uses paral-
lel mode to simultaneously conduct tasks 4 and 5. The workflow of 
tasks then comes to an end.

Each service in the IoT offers a certain functionality, and it is also pos-
sible for different services to offer the same functionality under dif-
ferent Quality of Service (QoS) attributes. To fulfilll the population’s 
requirement, service discovery is the first step that is taken, in which 

Fig. 1. Domains/sub-domains of smart agriculture.

Fig. 2. Applications of Internet of Things in the real world.
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it searches for the corresponding available services for a particular 
task. In the process of choosing the appropriate candidate services 
for a particular atomic service, QoS plays an important role. Next 
comes service selection, where services that satisfy the required QoS 
attributes are selected. Finally, services are composed that either 
employ local optimization or global optimization [10]. The growing 
number of devices is one of the biggest obstacles confronting IoT. 
It was already noted that IoT applications must be intelligent and 
operate without the need for human interaction. They ought to be 
able to think and act like people do. In such a search space, conven-
tional search techniques are not meaningful. It would be practically 
difficult to look through every potential combination in search of 
the optimal solution. In reality, the service composition optimization 
problem is an NP-hard, non-deterministic polynomial-time problem 
[11]. Meta-heuristic approaches are thus helpful in solving problems 
of this nature. These approaches can be broadly classified into five 
categories: bio-inspired algorithms, physical algorithms, evolution-
ary algorithms, swarm intelligence algorithms, and miscellaneous 
algorithms [12]. These algorithms were primarily created to address 
problems with a single objective, but they can now be used to tackle 
problems with multiple objectives as well. The majority of real-world 
examples take into account competing goals, and maximizing one 

goal may have unfavorable effects on the other. Therefore, the 
answer to this problem is to have a collection of answers where each 
aim is achieved to some extent by each group of solutions without 
any of them dominating the others. Those are known as Pareto-
optimal solutions [13, 14].

The goal is to consider multi-objective optimization of service com-
position, where the objectives of cost and time both have a nonlin-
ear relationship between them. The objectives can be summed up 
as follows:

1) Service composition of various atomic services involved in apple 
crop production based on QoS attributes is done by taking cost 
and time as two objectives to be minimized.

2) Lagrange’s interpolation method has been used to resolve 
the nonlinear relationship between the cost and time of each 
service.

3) Then, Non-dominated Sorting Genetic Algorithm II (NSGA-II) 
optimization was carried out to produce Pareto solutions.

4) A comparison of Lagrange’s Interpolation-based NSGA-II 
approach (La-NSGA-II) has been done with Linear Interpolation-
based NSGA-II (Li-NSGA-II) to see which one offers the best ideal 
solutions.

5) Statistical comparisons have been made to provide a clear pic-
ture of the outcomes.

The contribution of this paper lies in demonstrating how service 
composition optimization in smart agriculture applications can be 
achieved, enabling farmers to construct personalized agricultural 
plans based on their needs while maintaining an optimal balance 
between minimizing associated time and cost, ultimately contribut-
ing to profitable farming practices. Additionally, this work addresses 
the limitation of the work [2] where a linear relationship between 
the time and cost is assumed, which does not accurately represent 
real-world scenarios of smart agriculture. Rather, our work takes into 
account a more practical and non-linear relationship between these 
objectives.

The rest of the paper is divided as follows: Section 2 covers a few 
insights into the literature review in smart agriculture. The meth-
odology and proposed framework are demonstrated in Section 3, 
whereas Section 4 presents the experimental setup and results of 
simulations. Finally, the complete paper is concluded in Section 5.

II. LITERATURE WORK

Agriculture-based IoT has become an essential research area due to 
the population’s increasing demand for food. Numerous studies have 

Fig. 3. Diversified sub-domains of smart agriculture.

Fig. 4. A generalized workflow.
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been conducted so far on smart agriculture. A few discussions from 
the literature in this smart agriculture field have been attempted to 
cover in this section.

P. P. Ray et  al. [15] demonstrate a review of applications of IoT in 
smart agriculture, which includes pest and disease management, 
irrigation management, water quality management, soil moni-
toring, precision agriculture, cattle movement monitoring, and 
supply chain management. All IoT-supported technologies—hard-
ware platform-based, wireless communication-based, and cloud-
based—are discussed in detail along with a comparison of various 
IoT sensor systems available in the literature. The paper has been 
extended by providing case studies on seven different research top-
ics in smart agriculture. The authors conclude the paper by high-
lighting a few key challenges that must be addressed, including 
node energy management, device heterogeneity, fault tolerance, 
and cost-effectiveness. Wen Tao et al. [16] also provides a system-
atic review of IoT applications in smart agriculture. Internet of 
Things sensors and various communication technologies used in 
agriculture are discussed in detail along with the challenges faced. 
The authors have concluded that cost, reliability of data, and stan-
dardization of IoT devices are major concerns that need to be dealt 
with. Another review provided by A. Srivastava et al. [17] not only 
discusses how IoT technology is solving many of the challenges 
faced by farmers in agriculture, but also explains that issues such 
as the cost of equipment, power saving of IoT nodes, data security, 
data privacy, and fault tolerance must be addressed for the effec-
tive implementation of technology to make agriculture smarter. 
E.G. Symeonaki et al. [18] present a review on the usage and impact 
of cloud-based IoT in climate-smart agriculture. A few applications 
such as cloud agro-systems and PDCA (plan-do-check-act) cycle-
based agriculture cloud services are explained in detail. The authors 
found that, even though these technologies offer numerous advan-
tages, they still lack integration in the experimental stage. Low-cost 
network coverage, farmer training centers, user-friendliness, and 
proper standardization for IoT devices are major problems that 
must be overcome. S. Wolfert et al. [19] provide a review of appli-
cations of big data in smart farming. They stated that its scope is 
influencing the entire food supply chain and providing predictive 
insights into farming. Aside from that, the considerable expansion 
of IoT devices is resulting in a vast volume of data with a wide vari-
ety that can be recorded, analyzed, and used for decision-making 
with the help of big data. The authors conclude the future of smart 
farming along a spectrum between two extreme scenarios: open 
collaborative systems and closed proprietary systems. A few issues 
have also been addressed, such as data privacy, security, openness 
of platforms, and intelligent analytics. A. Sharma et al. [20] demon-
strate machine learning applications in smart farm management. 
They have explained that deep learning algorithms such as convo-
lutional neural networks, support vector machines, random forests, 
and decision trees are good for recognizing plant diseases, whereas 
regression methods are best for determining weather forecasts, 
yield production, and soil properties. Smart harvesting, irrigation 
systems, robots, and drones all play vital roles in minimizing human 
labor. They have concluded the paper study by mentioning NLP-
based chatbots and hybrid algorithms as potential solutions for 
making this sector more sustainable.

It can be seen that the review papers presented in the literature are 
focused on the use of modern technologies like machine learning, 
big data, IoT, and cloud computing to increase yield and make the 

agriculture sector smarter. Due to the increase in IoT devices, data 
are increasing day by day, so there is a need to optimize this huge 
data to extract the desired information. Various meta-heuristic 
approaches have been implemented by researchers to optimize the 
data generated by smart devices.

G. Sushanth et al. [21] have developed an IoT-based smart agriculture 
system in which decisions on watering plants are made by monitor-
ing humidity, temperature, and moisture. A motion detector sensor 
is also used to sense the movement of animals in the field using an 
Arduino board, and notifications are sent to the farmer by SMS using 
Wi-Fi/3G/4G. Similarly, J. Muangprathub et al. [22] propose a wireless 
sensor-based system for optimally watering crops. This framework 
includes hardware, web-based applications, and mobile applica-
tions as three primary components. Data from soil moisture sensors 
are collected using a hardware module, and a web-based applica-
tion has been created to manipulate the data gained through data 
mining, before using a mobile application to water the field either 
automatically or manually. The real experiment was carried out in 
three distinct villages in Thailand’s Makhamtia area, using lime and 
home-grown vegetables as crops to be evaluated. The research 
demonstrated that the optimal temperature for good productivity 
of lime and home-grown vegetables in that area is within 72–81% 
and between 29 degrees and 32 degrees, respectively. S.K. Roy et al. 
[23] develops an architecture for outdoor and terrace gardening 
for predicting rainfall using a genetic algorithm with real data. In 
the case of terrace gardening, if rainfall is not predicted, a sensor-
based system checks whether soil moisture is below a pre-defined 
threshold and, if so, a signal is sent to the relay and GSM module via 
Arduino UNO to turn on the water pump until the soil sensor reaches 
its threshold value. In outdoor areas, the signal from the moisture 
sensor is transferred to the smartphone through the ESP8266 Wi-Fi 
module, which leads the UAV to spray water in the specific region. A. 
Saha et al. [24] detail how researchers analyze IoT sensor data with 
machine learning and meta-heuristic approaches to obtain near-
optimal solutions in smart transportation, smart cities, smart homes, 
smart agriculture, smart healthcare, smart parking, smart environ-
ment, and smart waste management. The authors have surveyed Ant 
Colony Optimization (ACO), Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), and Simulated Annealing (SA) algorithms used 
in conjunction with machine learning approaches. They emphasize 
that machine learning with meta-heuristics approaches is the future 
of optimization for IoT-based applications.

J.C. Alonso Campos et al. [25] demonstrated an NSGA-II algorithm-
based system that minimizes energy costs while maximizing the 
pressure demands of an irrigation schedule from a pumping sta-
tion. They explored five diverse scenarios, comparing both single-
objective and multi-objective optimization approaches, as well as 
parallel and single-threaded evaluations. Their findings indicate that 
the multi-objective approach achieves better results than the single-
objective approach within fewer iterations. Additionally, they found 
that parallel evaluation does not affect the algorithm’s convergence 
rate but speeds up the process by increasing computational capac-
ity. The authors concluded that a cost reduction of approximately 
6–7% was achieved with parallel evaluations when compared to 
single-threaded evaluations.

With an emphasis on agricultural output and environmental impact, 
I. Kropp et al. [26] sought to optimize irrigation and fertilizer sched-
uling for sustainable intensification. The research combined the 
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Decision Support System for Agrotechnology Transfer crop model 
with the Unified Non-dominated Sorting Genetic Algorithm-III 
(U-NSGA-III), using multi-objective optimization strategies. The sys-
tem discovered irrigation and nitrogen strategies that decreased 
water consumption by 48%, nitrogen leaching by 51%, and nitrogen 
usage by 26%.

S. Sharma et  al. [27] have proposed a fuzzy inference system to 
check the impact of uncertainties on the time and cost of various 
composite services involved in apple plant production and optimize 
those services using NSGA-II, resulting in diversified optimal solu-
tions. However, one limitation of this work is that it considers a lin-
ear relationship between the time and cost objectives, which does 
not accurately represent real-world scenarios of smart agriculture 
applications.

Thus, the work presented in this paper proposes a Lagrange inter-
polation-based NSGA-II optimization approach for implementing 
service composition in smart agriculture, where Lagrange’s interpo-
lation is used to define the non-linear relationship between the time 
and cost of each service.

III. PROPOSED FRAMEWORK

This section introduces the concepts of service composition, 
Lagrange’s interpolation, and optimization methods for use in smart 
agricultural challenges. Each of the three concepts is well explained 
concerning the proposed architecture as well as the proposed 
La-NSGA-II.

A. Service Composition Model
The term “service composition” can be defined as a combination of 
numerous services. There is no set method for defining the service 
composition that must match user criteria. However, web services 
are defined by several QoS characteristics such as scalability, avail-
ability, time, throughput, and cost. User requests are routed through 
a service pipeline. Then, for each atomic service, a candidate services 
list is created. These services are functionally equivalent to the user’s 
request, but each atomic service has a unique set of QoS criteria [28].

The goal of this research is to provide an optimum solution for apple 
crop production to tackle the multi-objective problem of related 
cost and time in the growing environment. Assume that there are 
“t” services engaged in cultivating apple harvests, each of which is 
treated as an atomic service with unique QoS metrics. This notion 
can be specified using the following equations, whose symbol 
descriptions are given in Table I.

Equation (1) provides the atomic services, and (2) identifies the can-
didate services that belong to those atomic services [29].

G g g g g gi t� � �{ , , , , , , }1 2 3  (1)

g CS CS CS CS i ti i i ij ik� � �� � � �1 2 1 2 3, , , , , , , , ..  (2)

Equation (3) shows how candidate services are influenced by non-
functional QoS parameters as follows:

CS QoS CS j kij ij� � �� � � �1 2 3, , , ..  (3)

Thus, the final service composition can be determined by (4):

C CS CS CS CSj j j tj� �{ , , , }* * * *
1 2 3  (4)

B. Phase-1: Lagrange’s Interpolation
Lagrange interpolation can find a polynomial that exactly takes the 
value that has been observed at each observed point [30].

There is a unique k-degree polynomial Lk (x) satisfying Lk (x) = f(xi), 
given k + 1 different interpolation points xi where (i = 0, 1, 2, … k) and 
corresponding numbers f(xi) who may or

 may not be samples of a function f. Let
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x x
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Equations (5) and (6) are showing Ii(x) which is an n-degree polyno-
mial that also satisfies

l x
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The k-degree polynomial Lk(x) can thus be expressed in Lagrange 
form as shown in equation (7).

L x f x l xk

i

k

i i� � � � � � �
�
�

0

 (7)

Selecting any k + 1 points from a k——degree polynomial function 
gives the function expression [31].

C. Phase-2: Non-dominated Sorting Genetic Algorithm-II
Agricultural systems are multi-functional because their behav-
ior involves consideration of variables such as the utilization of 
energy, labor time, labor cost, maintenance cost, and implemen-
tation costs as well. As a result, several evolutionary approaches 
can be used to evaluate various optimization goals and find the 
optimum solution.

Using meta-heuristic evolutionary computational algorithms to find 
optimal solutions is the best way. One of the most popular meta-
heuristic evolutionary algorithms is NSGA-II, proposed by K. Deb in 
2002 [32]. The method uses non-dominated sorting and the crowd-
ing distance idea to locate a collection of uniformly distributed solu-
tions and to boost diversity for any multi-objective problem. To begin 
the process, any random collection of individuals is sorted using a 
non-dominated sorting approach. In this stage, all non-dominated 

TABLE I. DESCRIPTION OF NOTATIONS AND SYMBOLS USED IN EQUATIONS

Symbol Description

G Atomic services

gi ith atomic service

CSik kth candidate service belonging to ith
atomic service

Qos Quality of service parameter

C Final composite service

CStj* tth possible options of all jth candidate services
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solutions are ranked first and are temporarily removed from the 
initial population. Similarly, the following set of solutions is placed 
second. This approach is repeated until all viable sets of solutions 
have been ranked. The parent population is formed in the follow-
ing step by utilizing the binary tournament selection method on 
the existing population. The binary tournament’s selection method 
entails selecting any two solutions from the existing population and 
then ranking them. The better option is not necessarily on the same 
side. In that case, the crowding distance concept is used. Following 
the selection of parents, the population of parents is subjected to 
the crossover and mutation operators to create offspring. The next 
population is made up of the best solution from the combined 
population of parents and children. This process will continue until 
a termination condition is met. It can run for a defined number of 

generations or until all potential solutions are explored. Figure 5 
defines the pseudocode of the NSGA-II algorithm [33].

D. Proposed Architecture
The architecture proposed for solving the optimization service com-
position problem is shown in Fig. 6. It has five layers: sensor layer, 
network layer, cloud layer, service composition layer, and application 
(user interface) layer.

1) Sensor Layer—This layer is responsible for collecting data from 
several IoT sensors such as soil sensors (temperature sensors, 
moisture sensors, motion sensors), cameras, and so on.

2) Network Layer—This layer provides a communication link 
between the data collected from sensors and the servers 
present. For example, Bluetooth, Zigbee, LoRa, LoWPAN, Wi-Fi, 
etc.

3) Cloud Layer—It serves as virtual storage and offers a variety 
of sub-services via several private, public, or hybrid clouds. 
Software as a Service (SaaS), Infrastructure as a Service (IaaS), 
and Platform as a Service (PaaS) are all available. Our work has 
taken 14 services related to apple crop production from the 
cloud and defined them in a sequential workflow.

4) Service Composition Layer—This is the architecture’s most 
important layer. It composes several sub-services in response 
to the user’s demands to meet their complex requirements. 
Initially, services in the cloud are discovered; next, required 
services are selected from available cloud options, and finally, 
services are composed. This layer is connected with optimiza-
tion algorithms in our work (here, the NSGA-II technique is 
employed as an optimization approach) to optimize the com-
posite services based on the user’s demands.

Fig. 5. Non-dominated Sorting Genetic Algorithm-II.

Fig. 6. Proposed architecture for service composition optimization.
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5) Application Layer—The services compiled in the previous phase 
are required to be made available to end users via the applica-
tion layer.

E. Lagrange’s Interpolation-based Non-dominated Sorting 
Genetic Algorithm-II Approach
This paper has presented a novel La-NSGA-II for service composi-
tion in smart agriculture. Initially, all the genetic operators, such 
as population size, number of generations, crossover, and muta-
tion probability, are initialized. Then, during the population initial-
ization phase, Lagrange’s interpolation is used to determine the 
cost of each service corresponding to the random time generated 
between the minimum and maximum time of each service. The 
process is further followed by generating non-dominated solu-
tions and calculating crowding distance. Finally, selection, cross-
over, and mutation operations are done to generate the offspring. 
The whole process is repeated until the convergence criterion is 
satisfied. The steps involved are shown in the flow chart illustrated 
in Fig. 7.

IV. EXPERIMENTAL SETUP AND RESULT ANALYSIS

This section provides a detailed overview of solution encoding, sim-
ulation parameters, dataset used, and result analysis of the proposed 
framework.

A. Solution Encoding
Our work has focused on choosing 14 atomic services along with 
their corresponding candidate services for apple crop produc-
tion. There exists a set of solutions “S” for the population “P” and 
it is described by using a string as shown in Fig. 8. The string size 
is equivalent to the total number of services taken, with indices 

representing the corresponding number and their values describ-
ing the particular candidate of the given service. For example, in 
Fig. 8, a string having an index equal to 6, defining the third candi-
date of service-6, has been finalized to become a part of the solu-
tion set.

B. Dataset Description
It can be observed from the literature that the majority of research is 
carried out on increasing crop yield, minimizing the use of fertilizers 
and pesticides, and using UAVs (Unmanned Aerial Vehicles) for crop 
monitoring. However, combining services and optimizing them with 
multiple objectives to achieve the desired output in one run is the 
least explored concept yet. Thus, to accomplish this, a dataset related 
to apple plant production from a survey of farmers in the Shimla and 
Kullu regions of an Indian state is taken [34]. Table II shows a tabular 
description of the dataset in detail.

C. Parameters Description
The proposed algorithm is executed on a personal computer run-
ning the MATLAB R2013a version on a 12th Gen Intel Core (TM) 
i5 @ 2.00 GHz with 16 GB RAM. Table III shows the parameters uti-
lized to validate the performance of the proposed algorithm. As a 
multi-objective optimization, the fitness function is determined by 
minimizing cost and time. The search is stopped when the trade-
off points remain constant for three consecutive iterations, which is 
achieved in the 1000 generations.

D. Results and Comparative Analysis
Since the goal of this study is to optimize the cost and time of a service 
composition problem in smart agriculture, this paper has checked 
the impact of non-linearities on cost. The whole problem is solved 
using La-NSGA-II approach. Pareto optimal solutions obtained are 

Fig. 7. Flow chart for the proposed La-Non-dominated Sorting Genetic Algorithm-II.

Fig. 8. Solution encoding for fourteen atomic services with time as an objective function.
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TABLE II. DATASET FOR APPLE CROP CULTIVATION

Service 
Number Atomic Services Time (in days) Cost (in rupees)

1 Soil testing and analysis 7 10,000

8 9500

10 7000

13 5700

14 5000

2 Apple variety selection 1 4000

1.5 3700

2 3000

2.5 2400

3 2000

3 Orchard establishment 30 2,00,000

45 1,74,000

54 1,25,000

77 65,000

90 50,000

4 Tree planting 2 10,000

3 9600

4 8200

5 7400

6 7000

5 Irrigation system 
installation

7 1,50,000

9 1,27,000

10 97,000

13 75,000

14 50,000

6 Fertilizer application 14 1,00,000

17 96,000

21 81,000

25 73,000

28 50,000

7 Pruning and training 7 30,000

12 27,000

15 21,000

19 19,000

21 15,000

Service 
Number Atomic Services Time (in days) Cost (in rupees)

8 Pest and disease control 14 1,00,000

17 97,000

21 87,000

27 76,000

28 70,000

9 Crop monitoring and 
management

60 50,000

77 46,000

91 34,000

111 25,000

120 20,000

10 Harvesting 14 70,000

19 68,000

23 49,000

25 41,000

28 35,000

11 Sorting and grading 7 30,000

8 28,000

11 26,000

13 19,000

14 15,000

12 Packaging and labeling 14 90,000

17 88,000

22 76,000

26 69,000

28 60,000

13 Storage and cold chain 
management

60 50,000

72 48,000

89 42,000

107 29,000

120 25,000

14 Marketing and 
distribution

90 80,000

97 78,000

122 61,000

167 44,000

180 40,000

TABLE II. DATASET FOR APPLE CROP CULTIVATION (CONTINUED)

(Continued)
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shown in Fig. 9. It can be analyzed that the profile is moving toward 
the coordinate axes, minimizing both cost and time while achieving 
trade-off points. Additionally, to demonstrate the efficacy of the sug-
gested approach, it has been examined with a Li-NSGA-II approach, 
which illustrates a linear cost–time relationship. A comparison of 
both approaches is illustrated in Fig. 10. Comparative study reveals 
that La-NSGA-II has a lower standard deviation value than Li-NSGA-II, 
indicating more reliable and consistent solutions. Further evidence 
that the algorithm is outperforming Li-NSGA-II is provided by the 
fact that the mean, median, and mode values of La-NSGA-II are, on 
average, 1% lower in time and cost objectives (refer to Table IV). Thus, 
it is apparent that La-NSGA-II is yielding more diversified Pareto opti-
mal solutions.

E. Statistical Analysis
Statistical analysis is the most effective way to comprehend the 
results thoroughly. Therefore, Table IV provides a statistical sum-
mary of both La-NSGA-II and Li-NSGA-II, allowing for the quantita-
tive evaluation of both approaches. As can be observed, La-NSGA-II 
is reaching a mean value of 476.3, whereas La-NSGA-II is getting a 
mean value of 456.1. Additionally, the median value for Li-NSGA-II is 
446, and for La-NSGA-II is 425.3, indicating that the latter has better 
solutions than the former. Moreover, the minimum and maximum 
values for Li-NSGA-II are 335.1 and 689.4, respectively, whereas for 
La-NSGA-II they are 328 and 688.6, respectively. Furthermore, the 

difference between the standard deviations of both approaches 
demonstrates that La-NSGA-II is producing more consistent out-
comes that demonstrate stability throughout the optimization 
process.

V. CONCLUSION

This study presents a novel approach to addressing non-linearities 
in multi-objective service composition optimization in smart agri-
culture. It has taken two scenarios. The first scenario has considered 

TABLE III. SIMULATION PARAMETERS OF NON-DOMINATED SORTING 
GENETIC ALGORITHM-II

S. No. Parameters Values

1 Population size 200

2 No. of generations 1000

3 Crossover probability (Pc) 0.9

4 Mutation probability (Pm) 0.07

Fig. 9. Pareto optimal solutions obtained from Lagrange’s 
interpolation-based Non-dominated Sorting Genetic Algorithm-II 
approach.

Fig. 10. Comparative analysis of Pareto solutions obtained from 
Lagrange’s interpolation-based Non-dominated Sorting Genetic 
Algorithm-II and Linear interpolation-based Non-dominated Sorting 
Genetic Algorithm-II.

TABLE IV. STATISTICAL ANALYSIS

Algorithm Statistics Time Cost

La-NSGA-II Min 328 4.451e+05

Max 688.6 9.737e+05

Mean 456.1 6.504e+05

Median 425.3 6.188e+05

Mode 328 4.451e+05

Standard deviation 106.5 1.576e+05

Range 360.6 5.286e+05

Li-NSGA-II Min 335.1 4.473e+05

Max 689.4 8.805e+05

Mean 476.3 6.21e+05

Median 446 5.937e+05

Mode 335.1 4.473e+05

Standard deviation 106.8 1.32e+05

Range 354.3 4.331e+05
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a non-linear relationship between cost and time by implementing 
Lagrange’s Interpolation and analyzing the corresponding Pareto  
optimal solutions. To assess the impact of non-linearities on a fit-
ness function, the same experiment has been conducted by con-
sidering a linear relationship between both objectives termed 
Li-NSGA-II. The overall setup is tested on a dataset comprising 
14 services pertaining to apple plant production. It has been 
concluded that non-linearities show a significant impact on the 
Pareto optimal solutions. This approach to composing and opti-
mizing services can help farmers construct personalized agri-
cultural plans based on their demands, resources, and ability to 
maintain an optimal balance between minimizing time for opera-
tions and lowering associated costs. It will further contribute to 
profitable and sustainable farming practices. However, there are 
a few limitations to this study. The dataset used for this study, 
specifically focusing on apple crop production in the Kullu and 
Shimla regions, may not provide direct generalizability for other 
regions or agricultural contexts. Furthermore, other important 
considerations like energy consumption, environmental impact, 
and crop yield quality are omitted due to its emphasis on time 
and cost optimization only. Additionally, the proposed system’s 
static nature may not fully account for the dynamic nature of 
agricultural environments, which include changes in weather 
patterns, pest attacks, and market prices. Future research direc-
tions encompass exploring other meta-heuristic algorithms, 
hybrid algorithms, and neural networks. To further enhance 
this work, it might be modeled as a discrete optimization prob-
lem to reflect real-world scenarios and incorporate various  
other constraints.
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