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ABSTRACT

In order to enhance the multi-objective optimization capability of power communication transmission networks, 
the author proposes an optimization method that integrates improved graph neural networks (GNNs) and 
genetic algorithms (GAs). The model integrates graph convolution and an attention mechanism to construct 
a multi-output prediction structure, achieving joint optimization of network reliability, transmission delay, and 
resource utilization. The test results on Institute of Electrical and Electronics Engineers (IEEE) 118 and 300 node 
systems show that this method significantly outperforms traditional Convolutional Neural Network (CNN) models 
in terms of network reliability (improved by 9.7%), latency (reduced by 24.7%), and resource utilization (improved 
by 11.5%). At the same time, the fusion model optimized the convergence algebra by 38% and increased the 
number of non-dominated solutions by 50%, demonstrating stronger solution space exploration ability and 
convergence efficiency. (1) Integrating a dynamic attention mechanism (graph attention module) with a residual 
graph convolution module to prioritize bottleneck links in power networks, unlike GraphCast’s fixed attention 
weights and (2) embedding GNN-derived features into GA initialization, addressing OpenDSS-GA’s reliance on 
random population generation. The research has verified the effectiveness and scalability of this method in large-
scale power communication networks, providing new ideas for optimizing complex networks.
Index Terms—Attention mechanism, electric power communication transmission network, genetic algorithm, 
graph neural network, multi-objective optimization

I. INTRODUCTION

With the rapid development of smart grid and energy Internet, as the core infrastructure sup-
porting power information transmission, the accurate prediction and optimization of the link 
performance of the power fiber communication system has become the key to ensuring the safe 
and stable operation of the power grid [1]. The power communication network carries key tasks 
such as scheduling control, fault protection, and real-time data exchange. Its reliability, latency, 
and resource utilization directly affect the overall efficiency of the power system [2, 3]. However, 
power communication networks have the characteristics of complex topology, strong dynamic 
variability, and multi-objective coupling. Traditional optimization methods face challenges such 
as low computational efficiency and insufficient solution space exploration ability when deal-
ing with large-scale networks. How to effectively integrate advanced data-driven technology 
and intelligent optimization algorithms, and break through the limitations of existing models in 
expressing complex network features, has become a current research focus.

In recent years, significant progress has been made in the optimization research of power com-
munication systems at both theoretical and technical levels. Wang et  al. focused on model-
ing the channel characteristics of spacecraft direct current (DC) power line communication. By 
analyzing the attenuation and noise characteristics of high-frequency signal transmission, they 
proposed an adaptive modulation method based on physical layer parameters, which provides 
an important reference for optimizing the underlying channel of power line communication. 

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

•	 Existing research has applied graph 
neural networks (GNNs), multi-objective 
optimization, and AI techniques (e.g., 
digital twins, 5G edge computing) to 
power communication systems.

•	 However, current methods struggle to 
capture both local and global topological 
features, handle dynamic network 
changes, or effectively balance multiple 
optimization objectives.

WHAT THIS STUDY ADDS ON THIS 
TOPIC?

•	 This study proposes a graph attention 
residual network–based routing and 
fault-tolerant scheduling mechanism that 
adaptively learns node/link importance 
and integrates multi-scale topological 
features, improving resilience and 
performance in dynamic power optical 
fiber communication systems.
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However, their model is limited to static scenarios and fails to solve 
the complexity of multi-objective collaborative optimization under 
dynamic topology [4]. In the field of communication security, Zhang 
et al. designed a privacy-preserving communication scheme based 
on linkable ring signatures for the V2V power trading scenario, 
which ensures the security of data transmission through light-
weight encryption mechanisms. However, their research focuses on 
protocol layer design and lacks systematic exploration of the joint 
optimization of network resource utilization and transmission effi-
ciency [5]. Furthermore, Zhang et  al. proposed a relay node opti-
mization method in non-orthogonal multiple access power line 
communication systems, which improves system capacity through 
dynamic power allocation. However, their model did not consider 
the dynamic reconstruction characteristics of network topology 
and did not introduce intelligent algorithms to enhance adaptabil-
ity to complex link states [6]. Sun et al. constructed a distribution 
network resource optimization allocation model from the perspec-
tive of power communication network coupling, revealing the 
impact mechanism of communication constraints on power sched-
uling. However, their optimization objectives were relatively single, 
failing to integrate multidimensional indicators such as reliability, 
latency, and resource efficiency, and did not fully utilize the global 
correlation characteristics of graph-structured data. Although the 
above research has promoted the optimization of power commu-
nication systems in different dimensions, there are still limitations, 
such as insufficient adaptability to dynamic scenarios, imperfect 
multi-objective collaboration mechanisms, and insufficient mining 
of graph structure features. It is urgent to achieve breakthroughs 
through cross-domain method fusion and model innovation [7]. 
Adnan et al. investigated the integrated application of Wavelength 
Division Multiplexing (WDM) and Coherent Optical Orthogonal 
Frequency Division Multiplexing (CO-OFDM) in Radio over Fiber 
(RoF) systems, providing a viable technical solution for high-
capacity data transmission in power communication networks [8]. 
Additionally, Loeffler explored the use of broadband tunable lasers 
in optical filter measurements. This technology offers theoretical 
support for dynamic wavelength allocation and signal quality mon-
itoring in power communication networks [9].

The main problems of existing research focus on three aspects: 
firstly, traditional graph neural networks (GNNs) have limited abil-
ity to extract multi-scale features from complex networks, making 
it difficult to simultaneously consider local details and global topo-
logical correlations; secondly, multi-objective optimization methods 
often rely on static weight allocation or independent optimization 
branches, resulting in insufficient expression of trade-off relation-
ships between objectives and limited coverage of non-dominated 
solution sets; thirdly, the application of attention mechanisms still 
remains at the node or edge level in a single dimension, lacking 
adaptive modeling capabilities for network dynamic changes and 
multi-objective coupling relationships. In addition, existing meth-
ods commonly face problems such as high computational complex-
ity and low optimization efficiency when dealing with large-scale 
power communication networks, making it difficult to meet the real-
time and scalability requirements of practical engineering scenarios.

In response to the above challenges, the author proposes a multi-
objective optimization method that integrates improved GNNs and 
genetic algorithms (GAs). By constructing a parallel fusion architec-
ture of graph convolution module (GCN) and graph attention mod-
ule (GAT), combined with a dynamic weight adjustment mechanism, 

multi-level extraction of network topology features and adaptive 
focusing of critical paths are achieved. Design a multi-branch output 
structure with reliability, latency, and resource utilization as indepen-
dent optimization objectives, and introduce non-dominated sorting 
strategies and dynamic loss weights to balance the competitive rela-
tionship between objectives [10, 11]. At the same time, embedding 
the feature encoding ability of GNNs in GAs enhances the directional-
ity of population initialization and mutation operations, and improves 
the search efficiency and convergence speed of the solution space. 
This method not only effectively integrates the global features and 
local dynamic change information of graph-structured data but also 
enhances the recognition ability of network bottleneck links and key 
nodes through the attention mechanism, providing a new techni-
cal path for multi-objective collaborative optimization of complex 
power communication systems. The research aims to promote the 
deep integration of GNNs and evolutionary algorithms in intelligent 
optimization of power systems through theoretical innovation and 
experimental verification, providing theoretical support and practi-
cal reference for the construction of high-reliability, low-latency, and 
high-resource utilization power communication networks.

II. RESEARCH ON MODEL CONSTRUCTION AND OPTIMIZATION 
METHODS

A. System Architecture Design

1) Analysis of Power Fiber Optic Communication Link Structure:
The power fiber optic communication link is the core part of the 
power system communication, mainly responsible for tasks such as 
scheduling control, fault protection, and real-time data transmis-
sion. The link relies on fiber optic media, combined with transmis-
sion equipment and protection devices, to construct a multi-level 
network structure, which is widely deployed on high-voltage trans-
mission lines [12, 13].

Common optical cables include overhead ground wire, fiber, and 
all dielectric self-supporting optical cable (ADSS). Overhead ground 
wire fiber combines communication and lightning protection func-
tions and is suitable for high-voltage transmission lines; ADSS instal-
lation is flexible and suitable for medium and low voltage scenarios 
[14]. The two often form a hybrid topology structure, such as a ring 
network, star network, or tree network, to match the communication 
needs of stations with different voltage levels (Fig. 1). The link struc-
ture is divided into four layers, and the typical structural parameters 
are listed in Table I to Table IX.

2) Performance Parameter Collection and Feature Extraction:
The performance parameter collection and feature extraction of 
power communication networks are the foundation of network 
optimization, which can help identify operational hazards, evalu-
ate communication quality, and support scheduling decisions. The 
author constructed a multidimensional performance parameter sys-
tem covering the physical layer to the application layer (see Table II), 
and used various methods such as OTDR testing, spectral analysis, 
Internet Control Message Protocol (ICMP) detection, etc., to achieve 
high-precision acquisition.

Performance feature extraction includes statistical features (such as 
mean, standard deviation, quantile, etc.), frequency domain features 
(identifying periodic patterns through the Fourier transform), and 
topological features (reflecting network structure, such as average 
path length, clustering coefficient, etc.).
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The mathematical expression of feature extraction can be summa-
rized as the following formula (1):

X f P� � � 	 (1)

Among them, X represents the extracted feature vector, P represents 
the original performance parameter set, and f represents the feature 
extraction function. For statistical features, they can be expressed as 
(2):

X P , P , min P , max P , Q P , Q P , Q Pstat 1 2 3� � � � � � � � � � � � � � �� �� � 	 (2)

Among them, μ(P) represents the mean, σ(P) represents the standard 
deviation, min(P) and max(P) represent the minimum and maximum 
values, respectively, and Q1(P), Q2(P), and Q3(P) represent the quartiles.

For time-frequency domain features, Fourier transform and wavelet 
transform are used as shown in formula (3):

X F ,freq � � � �� �� � � 	 (3)

Based on the network topology characteristics, the following key 
indicators are defined as formula (4):

X C , L , , B , Etopo g g g c g�� �� 	 (4)

Among them, Cg represents the global clustering coefficient, Lg rep-
resents the average path length, ρg represents the network density, 
Bc represents the betweenness centrality, and Eg represents the net-
work efficiency.

In addition, to address the correlation and complex structure 
between parameters, the author introduces an improved neural net-
work model that uses the parameters of device nodes as graph node 
features, with edges representing logical or physical connections. 
Through the information transmission mechanism, it is possible to 
more effectively extract the correlation features between nodes [15, 
16].

In order to quantify the effectiveness of features, a feature impor-
tance index is introduced as shown in formula (5):

I X
1
N

R X ,Yi
j 1

N

i j� � � � �
�� 	 (5)

Fig. 1.  Structure diagram of a power fiber optic communication 
link.

TABLE I.  PERFORMANCE COMPARISON BETWEEN FUSION MODEL AND CNN MODEL USED ALONE

Evaluation Indicators Fusion Model CNN + GA Model Performance Differences (%)

Network reliability 93.7 85.4 +9.7

Average transmission delay (ms) 23.5 31.2 −24.7

Resource utilization rate (%) 82.3 73.8 +11.5

Optimizing convergence algebra 65 105 −38.1

Solution time (s) 238.5 384.5 −38.0

Pareto solution quantity 42 28 +50.0

Network topology expression accuracy 0.917 0.832 +10.2

The ability to handle large-scale networks (time growth rate) 1.35 2.78 −51.4
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Among them, I(Xi) represents the importance of feature Xi, R(Xi, Yj) 
represents the correlation coefficient t between feature Xi and opti-
mization objective Yj, and N represents the number of optimization 
objectives.

3) Data Preprocessing and Normalization Process
In terms of normalization, considering the differences in perfor-
mance parameter dimensions and distributions, the author adopts 
the following three methods:

Min Max Normalization, as shown in formula (6):

x
x x

x x
norm

min

max min
�

�
�

	 (6)

Among them, x represents the original data point, xmin and xmax 
respectively represent the minimum and maximum values of the 
data, xnorm represents the normalized data, with a value range of 
[0,1].

Z-score standardization is shown in formula (7):

x
x

norm �
��
�

	 (7)

Among them, μ represents the mean of the data, σ represents the 
standard deviation, and xnorm follows a standard normal distribution.

For severely skewed data, a logarithmic transformation is used as 
shown in formula (8):

x log xnorm � �� �� 	 (8)

Among them, δ is a small positive number to prevent calculation 
errors when the original value is 0.

For different types of performance parameters (such as traffic, 
latency, bit error rate, topology indicators, etc.), appropriate normal-
ization methods should be selected to improve model processing 
effectiveness and indicator expressiveness [17, 18].

In order to further improve computational efficiency and reduce 
dimensional redundancy, the author also calculated the correlation 
coefficient matrix between features as shown in formula (9):

R
Cov X ,X

ij
i j

X Xi j

�
� �

� �
	 (9)

Among them, Rij represents the Pearson correlation coefficient 
between features Xi and Xj, Cov represents covariance, and σ repre-
sents standard deviation.

In addition, the principal component analysis method is used to 
reduce the dimensionality of the features, mapping high-dimen-
sional features to a lower-dimensional space while preserving the 
main variance information as shown in formula (10):

� � �X X W 	 (10)

Among them, X represents the original feature matrix, W repre-
sents the principal component loading matrix, and X represents the 
dimensionality reduced feature matrix.

B. Model Construction Plan

1) Design of Convolutional Neural Network Module:
In order to meet the processing requirements of graph-structured data 
in power communication transmission networks, the author designed 
an improved module based on a graph convolutional network (GCN) 
for extracting topological features and node attribute information in 
the network. This module combines spatial graph convolution with a 
multi-layer structure and introduces residual connections to enhance 
the stability and expressiveness of the model [19, 20].

The core operation of GCN is shown in formula (11):

H D AD H Wl 1
1
2

1
2 l l( ) ( ) ( )( )� � �

� �  �
	 (11)

Among them, H(1) represents the node feature matrix of the l-th 
layer, Ã = A + I is the adjacency matrix with self-loops added, D ̃is the 
degree matrix of Ã, W(1) is the learnable weight matrix, and σ is the 
nonlinear activation function.

In order to improve the training effectiveness of deep networks, 
residual structures such as formula (12) are introduced:

TABLE III.  BASIC CHARACTERISTICS OF POWER COMMUNICATION LINK DATASET

Test System
Number of 

Nodes
Number  
of Links

Average Node 
Degree

Number of Communication 
Equipment Types

Business Flow 
Type

Dataset Size 
(MB)

IEEE 14 node 14 20 2.86 3 5 25

IEEE 30 node 30 41 2.73 4 8 42

IEEE 57 node 57 80 2.81 5 10 78

IEEE 118 node 118 186 3.15 6 12 165

IEEE 300 node 300 411 2.74 8 15 380

TABLE II.  PARAMETER SETTINGS FOR POWER COMMUNICATION LINKS

Type of Parameter Parameter Range Unit

Bandwidth capacity 10–10000 Mbps

Transmission delay 1–100 ms

Link reliability 0.9–0.9999 –

Cost of use 1–100 10000 yuan/year

Load rate 0.1–0.9 –
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H D AD H W Hl 1
1
2

1
2 l l l( ) ( ) ( ) ( )( )� � �

� ��  �
	 (12)

At the same time, in order to enhance the perception ability of the 
local structure of nodes, an aggregation mechanism is adopted as 
shown in formula (13):

h W AGGREGATE h , u vv
l 1 l l

u
l�� � � � � � � �� � � � � �� �� ��

�
� �

�
��  	 (13)

The AGGREGATE function represents the aggregation operation of 
neighbor node information, and N (v) represents the neighbor set 
of node v.

The following is the pseudocode of the core implementation code 
Fig. 2.

2) Attention Mechanism Embedding Strategy:
In multi-objective optimization of power communication transmis-
sion networks, the importance of different nodes and their adjacent 
edges varies. In order to enhance the sensitivity of the model to key 
structures and features, the author introduces a graph attention 
mechanism and adopts node-level and edge-level attention strate-
gies to enhance the model’s ability to express topology and attributes.

The calculation of attention coefficient between nodes is shown in 
formulas (14) and (15):

e LeakyReLU a WhWhij
T

i j� �� ��� � 	 (14)

�ij
ij

k i
ik

exp e

exp e
�

� �
� �

� � �� 

� (15)

Among them, N (i) represents the set of neighbors of node i, and 
LeakyReLU is an activation function that helps to handle negative 
input. In this way, the model can adaptively learn the importance of 
interaction between nodes [21, 22].

In order to enhance expressive ability, a multi-head attention mech-
anism is introduced as shown in formula (16):

h
1
K

W hi
’

k 1

K

j i
ij
k k

j� �
�
�

�
�
�� � � �� �� �


	 (16)

Among them, K is the number of attention heads, αij
k  is the attention 

weight of node j to node i under the kth attention head, and Wk is the 
weight matrix of the kth attention head.

On this basis, further edge attribute information is introduced as 
shown in formula (17):

e LeakyReLU a WhWh Weij
T

i j ij� �� ��� � 	 (17)

eij (14) incorporates link reliability (Rij) and latency (Dij) as edge attri-
butes, enabling the model to focus on vulnerable paths (e.g., high-
load links).

The attention coefficients (14–17) explicitly model power-network-
specific features: eij = LeakyReLU(aT[Whi||Whj||Rij||Dij]), where Rij and 
Dij are reliability and delay. This allows adaptive weighting of critical 
links (e.g., protection signaling paths).

The model parameter settings are shown in Table III, and the core 
code is shown in Fig. 3.

3) Model Fusion Structure and Output Layer Settings:
In order to meet the multi-objective optimization requirements 
of the power communication transmission network, the author 

TABLE V.  HYPERPARAMETER CONFIGURATION OF IMPROVED GRAPH NEURAL NETWORK MODEL

Hyperparameter Category Hyperparameter Name Value Range Optimal Value

Network structure parameters Number of convolutional layers in the graph Floors 2–6 Floors 4

Hidden layer dimension 32–256 128

Attention head count 1–8 4

Training parameters Learning rate 0.0001–0.01 0.001

Batch size 16–128 64

Training epochs 50–500 200

Regularization parameter Dropout rate 0.1–0.5 0.3

L2 regularization coefficient 0.0001–0.01 0.001

Optimizer parameters Momentum coefficient 0.8–0.99 0.9

ε value 1e-8-1e-6 1e-7

TABLE IV.  PARAMETER CONFIGURATION OF GENETIC ALGORITHM

Parameter Value Range Optimal Value

Population size 50–500 200

Maximum algebra 50–1000 300

Crossover probability 0.6–0.9 0.8

Mutation probability 0.01–0.2 0.05

Elite retention ratio 0.05–0.2 0.1

Championship Selection Scale 2–7 3
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designed a structure that integrates GCN and graph attention mod-
ule (GAT), and combined multiple output branches to achieve joint 
prediction of reliability, latency, and resource utilization. The pseudo-
code is shown in Fig. 4.

The fusion structure adopts a parallel architecture to achieve fea-
ture complementarity while maintaining module independence. By 
weighted fusion of two types of features as shown in formula (18):

H H 1 Hfusion GCN GAT� � �� �� � 	 (18)

Among them, HGGN and HGAT are the output features of GCNs and 
graph attention networks, respectively, and α is the learnable weight 
parameter.

The weight coefficient α is dynamically generated by the feature 
adaptive network as shown in formula (19):

� � � �� �� ���� �W H H bGCN GAT 	 (19)

Among them, Wα and bα are learnable parameters, and σ is the sig-
moid activation function, ensuring that the value of α is between 0 
and 1.

After fusion, the features are processed by a multi-layer perceptron 
to output three types of target branches as shown in formula (20). 
The configuration is detailed in Table IV.

L w L w L w Ltotal 1 reliability 2 delay 3 resource� � � 	 (20)

Among them, w1, w2, and w3 are weight coefficients used to balance 
the importance of different objectives.

C. Training and Optimization Methods

1) Selection of Loss Function and Definition of Evaluation Indicators:
In multi-objective optimization modeling, a reasonable loss function 
design directly affects the quality of model training and optimization 
results. Based on the characteristics of the power communication 
transmission network, the author constructed a weighted com-
prehensive loss function as shown in formula (21), which compre-
hensively considers three aspects: network reliability, transmission 
delay, and resource utilization:

L L L Ltotal topo trans res� � �� � � 	 (21)

Among them, α, β, and γ are weight coefficients used to balance the 
contributions of the three types of losses, satisfying α+β+γ=1.

The topology loss L_topo, transmission performance loss L_trans, 
and resource utilization loss L_res are respectively:

L
1
N

A log P 1 A log 1 Ptopo
i 1

N

j 1

N

ij ij ij ij� � � � �
� �� � � � � � � � 	 (22)

TABLE VIII.  KEY PERFORMANCE PARAMETERS AND COLLECTION METHODS OF POWER COMMUNICATION TRANSMISSION NETWORK

Level Performance Parameter Collection Method Acquisition Cycle Acquisition Accuracy Data Scale

Physical layer Optical power OTDR equipment 15 minutes 0.01 dBm Millions per day

Physical layer Signal to noise ratio (OSNR) Spectral analyzer 30 minutes 0.1 dB Million level/day

Physical layer Bit error rate (BER) SDH equipment 5 minutes 1012 Billion level/day

Link layer Frame error rate Network analyzer 1 minute 106 Billion level/day

Link layer Link utilization SNMP protocol 5 minutes 0.1% Millions per day

Network layer Route changes Routing log Real time – Million level/day

Network layer End-to-end delay ICMP detection 1 minute 0.1 ms Billion level/day

Application layer Business availability Business monitoring system 1 minute 0.01% Millions per day

Application layer Quality of experience (QoE) QoE evaluation model 5 minutes 0–5 points Million level/day

OTDR, optical time-domain reflectometer; SDH, Synchronous Digital Hierarchy; SNMP, Simple Network Management Protocol; ICMP, Internet Control Message 
Protocol.

TABLE VI.  OUTPUT LAYER BRANCH STRUCTURE CONFIGURATION TABLE

Branch 
Name

Layer 
Structure

Activation 
Function

Output 
Dimension

Optimization 
Objectives

Reliability 
branch

[128, 64, 32, 1] ReLU + Sigmoid 1 Network reliability 
indicators

Delay 
branch

[128, 64, 32, 1] ReLU + ReLU 1 Transmission 
Latency Index

Resource 
fork

[128, 64, 32, 1] ReLU + Sigmoid 1 Resource 
utilization index

TABLE VII.  ATTENTION MECHANISM PARAMETER CONFIGURATION TABLE

Parameter Parameter Values

Attention head count 8

Attention level 3

Attention dimension 32

Dropout rate 0.2

Activation function LeakyReLU

Residual connection True
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L
1
M

T Ttrans
i 1

M

i i
* 2

� �� �
�� 	 (23)

L
1
N

U Ures
i 1

N

i opt� �
�� 	 (24)

As shown in formulas (22), (23), (24), Aij is the element in the true 
adjacency matrix, Pij is the predicted connection probability, and N is 
the number of network nodes; Ti is the actual transmission delay of 
the i-th path, Ti

*  is the target delay, and M is the number of paths; Ui 
is the resource utilization rate of node i, and Uopt is the ideal resource 
utilization rate.

Fig. 2.  Pseudocode of residual graph convolution module.

TABLE IX.  TYPICAL STRUCTURAL PARAMETERS OF POWER FIBER OPTIC COMMUNICATION LINKS

Type of Parameter Backbone Layer Core Layer Convergence Layer Access Layer

Bandwidth capacity 100G–400G 10G–100G 1G–10G 100M–1G

Transmission distance (km) >100 50–100 10–50 <10

Redundancy requirements (%) 99.999 99.99 99.9 99

Topology Full mesh Ring network/mesh network Double ring/tree like structure Single ring/star shaped

Fiber type G.655/G.654 G.655/G.652 G.652 G.652/G.657

Wavelength division multiplexing DWDM DWDM/CWDM CWDM Direct transmission

Protection mechanism 1 + 1 hot backup 1 + 1 hot backup 1: N cold backup No/simple protection

Delay requirement (ms) <10 <20 <50 <100

DWDM, Dense Wavelength Division Multiplexing; CWDM, Coarse Wavelength Division Multiplexing; ICMP, Internet Control Message Protocol.
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2) Hyperparameter Setting and Training Strategy:
In order to ensure efficient learning of topology and multi-objective 
features of power communication networks, the author optimized 
the key hyperparameter configurations of GNNs and GAs through 
extensive experiments (see Tables V and VI for details) and proposed 
a two-stage training strategy and a dynamic adjustment mechanism 
for learning rate.

The optimal number of convolutional layers for the GNN is four, 
the dimension of hidden layers is 128, and the number of attention 
heads is four. In terms of training hyperparameters, a recommended 
learning rate of 0.001, batch size of 64, training epochs of 200, drop-
out rate of 0.3, and L2 regularization coefficient of 0.001 effectively 
improve the model’s expressive and generalization abilities [23, 24]. 

The population size of the GA is 200, the maximum number of gen-
erations is 300, the crossover rate is 0.8, the mutation rate is 0.05, and 
the elite retention ratio is 0.1.

In order to further improve training efficiency and model adaptabil-
ity, the author adopts a two-stage training method of pretraining 
and fine-tuning. The first stage uses historical graph data for gen-
eral training, and the second stage fine-tunes features in the tar-
get scene. The learning rate is dynamically adjusted using a cosine 
annealing strategy as shown in formula (25):

� � � � �t min max min
1
2

1 cos
t
T

� � �� � � �
�
�

�
�
�

�

�
�

�

�
� 	 (25)

Fig. 4.  Pseudocode of multi-branch fusion output.

Fig. 3.  Pseudocode of graph attention layer model.
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Among them, ηt is the learning rate of the t-th round, ηmax and ηmin 
are the maximum and minimum learning rates, respectively, set to 
0.001 and 0.00001, and T is the total training epochs.

In addition, combining data augmentation strategies to enhance 
model robustness includes node perturbation, edge perturbation, 
and feature noise injection.

The optimizer uses Adam and combines first-order and second-order 
momentum weighting, and its update rule is shown in formula (26):

m m
m

v
t t 1

t

t

� �
�

� �
^

^


	 (26)

Among them, mt and vt are the first-order and second-order moment 
estimates of the gradient, respectively, and ε is a small constant to 
prevent zero division errors.

3) Training Convergence and Overfitting Control Methods:
In order to ensure the reliability and generalization ability of the 
model in practical applications, the author established a train-
ing convergence evaluation and overfitting control system, which 
includes multiple indicators such as training loss, validation loss, and 
parameter gradient.

The training and validation losses are defined as equations (27) and 
(28), respectively:

L train L topo L trans L res_ • _ • _ • _� � �� � � 	 (27)

L_val = α·L_topo + β·L_trans + γ·L_res� (28)

Setting the training/validation loss ratio is used to dynamically 
monitor whether the model is overfitting. If the training loss con-
tinues to decrease but the validation loss increases, it indicates an 
increased risk of overfitting. Set the warning threshold R<0.7 or trig-
ger an early stop if the verification loss continues to rise for three 
rounds [25, 26].

The learning rate (0.001) and population size (200) were identi-
fied as the most sensitive hyperparameters. A smaller learning rate 
(<0.0005) slowed convergence, while a larger rate (>0.005) caused 
instability. Similarly, a population size <100 reduced genetic diver-
sity, and >300 increased computational cost without significant per-
formance gains (see Appendix A for ablation studies).

D. Complexity and Scalability Analysis
For IEEE 300 nodes, the fusion model achieves linear scalability 
(O(N1.2)) due to sparse graph processing, with training time stabilized 
at ~ 4.2 hours (vs. CNN + GA’s 9.5 hours). Graphics Processing Unit 
(GPU) memory usage remains under 18GB, feasible for industrial-
grade servers (see Table IX).

III. RESULTS AND ANALYSIS

A. Experimental Design and Dataset Description

1) Experimental Platform and Tool Description:
The author built a comprehensive experimental environment on a 
high-performance computing platform, equipped with dual Intel 
Xeon E5-2680 v4 processors, 256 GB of memory, 2 TB NVMe SSD, 

and 4 NVIDIA Tesla V100 GPUs, and used 40Gbps InfiniBand high-
speed interconnection to meet the parallel computing needs of 
large-scale GNNs and GAs [27, 28]. The software environment is 
based on Ubuntu 20.04 LTS, with core development tools includ-
ing Python 3.8, PyTorch 1.9.0, PyTorch Geometric, DEAP, MATPOWER, 
and PyPSA, supporting model building, power simulation, and data 
analysis. In order to evaluate the optimization effect, indicators such 
as hypervolume index (HV), average convergence time, and conver-
gence algebra were used. The training process employed the Adam 
optimizer and cosine annealing strategy, combined with an early 
stopping mechanism to improve training efficiency and stability. 
The overall experimental design provided reliable computational 
support and evaluation guarantees for multi-objective optimization 
[29, 30].

2) Construction and Partitioning of Power Communication Link 
Dataset:
The author has constructed a comprehensive dataset of power 
communication links, covering IEEE standard systems and actual 
communication network topologies, considering multidimen-
sional characteristics such as network structure, node attributes, 

Fig. 5.  Construction process of power communication link dataset.
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and link parameters. The construction of the dataset includes four 
major steps: basic topology collection, device parameter alloca-
tion, link indicator setting (such as bandwidth, latency, reliabil-
ity), and business matrix design (see Fig. 5). The final formation 
includes five types of network structures with 14 to 300 nodes, 
supporting multi-complexity algorithm testing. The relevant fea-
tures are shown in Table VII, and the link parameter configuration 
is shown in Table VIII. In order to improve the effectiveness of algo-
rithm training, the dataset is divided in an 8:1:1 ratio and expanded 
with 50 new topology structures, accompanied by a mathematical 
model for computable link reliability Rnet and total transmission 
delay Dij [31, 32].

3) Compare Algorithm Settings With Benchmark Model Selection:
In order to comprehensively verify the performance of the 
multi-objective optimization method based on improved GNN 
and GA proposed by the author (IGNN-GA), the author selected 
seven typical algorithms for comparison, including three tradi-
tional evolutionary algorithms (Non-dominated Sorting Genetic 
Algorithm II [NSGA-II], Multi-Objective Evolutionary Algorithm 
Based on Decomposition [MOEA/D], Strength Pareto Evolutionary 
Algorithm 2 [SPEA2]), two machine learning enhancement algo-
rithms (Machine Learning assisted Multi-Objective Evolutionary 
Algorithm [ML-MOEA], Deep Reinforcement Learning assisted 
Multi-Objective Evolutionary Algorithm [DRL-MOEA]), and two 
GNN algorithms (Graph Convolutional Network assisted Multi-
Objective Evolutionary Algorithm [GCN-MOEA], Graph Attention 
Network assisted Multi-Objective Evolutionary Algorithm GAT-
MOEA]), and uniformly set parameters to ensure fairness (see Tables 
III-V). At the same time, a theoretical benchmark model was con-
structed as an ideal reference, combined with multiple evaluation 
indicators (HV, Generational Distance [GD], Inverted Generational 
Distance [IGD], spread, runtime) to comprehensively evaluate the 
performance of the algorithm [33, 34]. The experiment covers IEEE 
standard systems and multiple types of random topologies, with 
a focus on analyzing the robustness and generalization ability in 
large-scale networks, comprehensively verifying the results of 
IGNN-GA in multi-objective optimization of power communication 
transmission networks.

Proposed IGNN-GA outperforms NSGA-III in hypervolume (HV: 0.82 
vs. 0.76) and MOEA/D-STM in convergence speed (300 vs. 450 gen-
erations), attributed to GNN-guided population initialization.

Business flow types include protection signals (e.g., differential pro-
tection), Supervisory Control And Data Acquisition (SCADA) control 
commands, Phasor Measurement Unit‌ (PMU) data, video surveil-
lance, voice communication, etc. A full list is provided in the supple-
mentary material.

B. Performance Indicator Evaluation Results

1) Comparison of Accuracy and Mean Square Error:
The performance of improved GNNs and GAs (improved GNN-GA) 
in multi-objective optimization was evaluated and compared with 
mainstream algorithms such as GA, Particle Swarm Optimization 
(PSO), GNN-GA, and DRL. Experiments were conducted on IEEE 30, 
118, and 300 node power communication networks using two met-
rics: accuracy and mean square error (MSE). The results showed that 
the improved GNN-GA achieved the highest accuracy and lowest 

error in different network scales, demonstrating stronger optimiza-
tion accuracy and stability [35].

Especially in medium to large-scale networks (such as 118 nodes 
and 300 nodes), as shown in Fig. 6, the improved GNN-GA accuracy 
reached 87.5% and 81.3%, respectively, significantly better than 
other algorithms. The MSE index also shows the minimum value, 
indicating that it can more effectively capture the complex structural 
characteristics of communication networks, has good generalization 
ability and scalability, and is suitable for complex power communica-
tion optimization scenarios.

2) Performance Differences of Various Models Under Different 
Link States:
In order to evaluate the stability and adaptability of algorithms under 
different link states, the author divided the link states into normal, 
mild congestion, moderate congestion, and severe congestion, and 
simulated the changes in link load and delay on the IEEE 118 node 

Fig. 6.  Comparison of accuracy and mean square error of different 
algorithms on networks of various sizes.
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system. The performance of each algorithm on three optimization 
objectives (reliability, delay, resource utilization) was compared (see 
Fig. 7). The results showed that the performance of all algorithms 
decreased with increasing congestion, but the improved GNN-GA 
remained optimal in all states, especially under severe congestion, 
with a reliability of 79.3%, the lowest transmission delay of only 68.5 
ms, and the highest resource utilization rate of 65.7%.

As congestion increases, the performance gap between improved 
GNN-GA and traditional algorithms further widens, demonstrating 
its stronger generalization ability and convergence efficiency in 
complex environments [36]. Among them, the improved GNN-GA 
reduced transmission latency by 26.5% compared to GA in severe 
congestion conditions, thanks to its bottleneck link identification 
and dynamic optimization capabilities after introducing attention 
mechanisms, reflecting its application advantages in optimizing 
large-scale power communication networks.

3) Analysis of Model Stability and Generalization Ability:
The performance of improved GNN-GA was compared with other 
mainstream algorithms in terms of stability and generalization ability 
(see Fig. 8). The results show that the improved GNN-GA has the low-
est standard deviation in network reliability, latency, and resource 
utilization, significantly better than traditional GA and PSO, indicat-
ing that its convergence performance is more consistent in multiple 
runs and is suitable for power communication system scenarios that 
require high stability of the results.

In the performance retention tests on five types of untested networks, 
the improved GNN-GA also showed the best performance, especially 
maintaining an optimization effect of 87.8% in dynamic networks, 
which is 22.7 percentage points higher than GA. In addition, as the 
complexity of the network increases, the performance degradation 
of improved GNN-GA is minimized, highlighting its robustness in 
complex and changing environments. Overall, improving GNN-GA 

has excellent stability and generalization ability, making it suitable 
for multi-objective optimization tasks in power communication 
transmission networks under different environments.

C. Ablation Experiment and Model Mechanism Validation

1) Performance Change Analysis After Removing Attention 
Mechanism:
Designed ablation experiments to compare the optimization effects 
of two models, one with an attention mechanism and the other with-
out an attention mechanism, under the same conditions. The results 
in Fig. 9 indicate that the complete model outperforms the ablation 
model in key indicators such as network reliability, delay control, and 
resource utilization. In particular, the reliability is improved by 6.5 
percentage points, delay is reduced by 26.8%, and resource utiliza-
tion is improved by 7.2%. In addition, the optimization process of the 
complete model converges faster, and the solution time is shorter.

In terms of multi-objective optimization ability, the complete model 
can generate more non-dominated solutions (42 vs. 31), and the 
average value of the objective function is also better (0.853 vs. 
0.761), demonstrating stronger solution space exploration ability. 
When facing a larger 300-node network, the performance of the 
complete model decreased by only 8.3%, while the ablation model 
decreased by 17.5%, further verifying the significant effect of the 
attention mechanism on improving model adaptability.

2) Comparison of the Effects of Using CNN Alone and Fusion Models:
In order to verify the advantages of the fusion model (improved 
GNN combined with GA) in optimizing power communication trans-
mission networks, the author conducted comparative experiments 
with the traditional CNN + GA model. Both were tested on the same 
dataset and parameter settings. The results show that the fusion 
model outperforms the CNN model in core indicators such as net-
work reliability (93.7% vs. 85.4%), transmission delay (23.5 ms vs. 31.2 

Fig. 7.  Comparison of optimization effects of various algorithms under different link states.
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ms), and resource utilization (82.3% vs. 73.8%), with a 38% improve-
ment in convergence speed, a 38% reduction in solution time, and 
a 50% increase in the number of non-dominated solutions (see 
Table IX), demonstrating stronger optimization ability and conver-
gence efficiency.

This difference arises from the differences in the model’s ability to 
handle graph-structured data. CNN needs to convert topology into 
adjacency matrix processing, which makes it difficult to capture 
long-range dependencies; GNN can directly express global topo-
logical features through attention mechanisms and graph message 
passing operations. At the same time, in large-scale networks, the 
fusion model exhibits better scalability: when testing expanded 
from 118 nodes to 300 nodes, its computation time only increased 

by 35%, while the CNN model grew by 178%. Overall, the fusion 
model outperforms the CNN model in terms of accuracy, efficiency, 
and scalability, making it more suitable for multi-objective optimiza-
tion in complex power communication transmission networks.

3) Evaluation of the Effectiveness of Different Types of Attention 
Mechanisms:
The performance of the self-attention mechanism, channel atten-
tion mechanism, and no attention model in multi-objective optimi-
zation was compared (see Fig. 10). The experimental results show 
that the self-attention mechanism performs the best in all core 
indicators, with network reliability reaching 93.7%, average latency 
reduced to 23.5 ms, and resource utilization rate reaching 82.3%, 
significantly better than the channel attention mechanism (91.2%, 

Fig. 8.  Comparison of stability and generalization ability of various algorithms.

Fig. 9.  Analysis of performance changes after removing the attention mechanism.
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25.3 ms, 79.5%) and no attention model (87.2%, 29.8 ms, 75.1%). In 
addition, the Pareto solution count and node importance recogni-
tion accuracy of the self-attention model are also far ahead, demon-
strating stronger structural learning and optimization capabilities.

Further analysis reveals that the self-attention mechanism is more 
suitable for handling complex graph-structured data, such as power 
communication networks, due to its ability to model global depen-
dency relationships. Although its model parameters are relatively 
high (246 000 vs. 213 000 channel attention), the performance 
degradation on large-scale networks (such as 300 nodes) is smaller, 
demonstrating stronger scalability. In contrast, although the chan-
nel attention mechanism has slightly lower performance, it is com-
putationally more efficient and suitable for resource-constrained 
environments.

IV. CONCLUSION

The multi-objective optimization method proposed by the author, 
which combines improved GNNs and GAs, exhibits excellent perfor-
mance in the complex graph structure scenario of power communi-
cation transmission networks. By constructing a fusion architecture 
that includes GCN and GAT modules, and designing multi-branch 
outputs to achieve multi-objective prediction, the model’s topology 
learning and structural expression capabilities have been effectively 
enhanced. The experimental results show that compared with tra-
ditional evolutionary algorithms (such as GA, PSO) and deep mod-
els (such as CNN + GA), the fusion model has significant advantages 
in multiple key indicators, such as network reliability, transmission 
delay, and resource utilization. The proposed method demonstrates 
adaptability to dynamic topologies, such as fault-reconfiguration 
scenarios (tested in an IEEE 118-node with 20% random link failures). 
The attention mechanism enables real-time weight adjustment 
for disrupted paths, maintaining >85% reliability under topology 
changes (see Section 3.3.3). Future work will extend this to mobile 
power Internet of Things (IoT) networks.

The ablation experiment further verified the key role of the atten-
tion mechanism in improving optimization performance, especially 

the self-attention mechanism, which has more advantages in node 
importance recognition and non-dominated solution search. The 
model can still maintain high optimization accuracy and stability in 
the face of complex conditions such as link congestion and network 
topology changes, demonstrating good generalization ability and 
scalability.

In addition, the author systematically optimized feature engineering, 
normalization processing, loss function design, and training strate-
gies, and combined multi-source data collection and dimensionality 
reduction methods to effectively improve the efficiency of model 
training and prediction accuracy. In summary, the method proposed 
by the author provides a theoretical basis and practical path for the 
intelligent optimization of power communication systems, with 
good engineering application prospects, and also provides a refer-
ence for the in-depth research of GNNs in power systems.
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