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WHAT IS ALREADY KNOWN ON THIS
TOPIC?

Existing research has applied graph
neural networks (GNNs), multi-objective
optimization, and Al techniques (e.g.,
digital twins, 5G edge computing) to
power communication systems.

However, current methods struggle to
capture both local and global topological
features, handle dynamic  network
changes, or effectively balance multiple
optimization objectives.

WHAT THIS STUDY ADDS ON THIS
TOPIC?

This study proposes a graph attention
residual network-based routing and
fault-tolerant scheduling mechanism that
adaptively learns node/link importance
and integrates multi-scale topological
features, improving resilience and
performance in dynamic power optical
fiber communication systems.
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ABSTRACT

In order to enhance the multi-objective optimization capability of power communication transmission networks,
the author proposes an optimization method that integrates improved graph neural networks (GNNs) and
genetic algorithms (GAs). The model integrates graph convolution and an attention mechanism to construct
a multi-output prediction structure, achieving joint optimization of network reliability, transmission delay, and
resource utilization. The test results on Institute of Electrical and Electronics Engineers (IEEE) 118 and 300 node
systems show that this method significantly outperforms traditional Convolutional Neural Network (CNN) models
in terms of network reliability (improved by 9.7%), latency (reduced by 24.7%), and resource utilization (improved
by 11.5%). At the same time, the fusion model optimized the convergence algebra by 38% and increased the
number of non-dominated solutions by 50%, demonstrating stronger solution space exploration ability and
convergence efficiency. (1) Integrating a dynamic attention mechanism (graph attention module) with a residual
graph convolution module to prioritize bottleneck links in power networks, unlike GraphCast's fixed attention
weights and (2) embedding GNN-derived features into GA initialization, addressing OpenDSS-GA's reliance on
random population generation. The research has verified the effectiveness and scalability of this method in large-
scale power communication networks, providing new ideas for optimizing complex networks.

Index Terms—Attention mechanism, electric power communication transmission network, genetic algorithm,
graph neural network, multi-objective optimization

I. INTRODUCTION

With the rapid development of smart grid and energy Internet, as the core infrastructure sup-
porting power information transmission, the accurate prediction and optimization of the link
performance of the power fiber communication system has become the key to ensuring the safe
and stable operation of the power grid [1]. The power communication network carries key tasks
such as scheduling control, fault protection, and real-time data exchange. Its reliability, latency,
and resource utilization directly affect the overall efficiency of the power system [2, 3]. However,
power communication networks have the characteristics of complex topology, strong dynamic
variability, and multi-objective coupling. Traditional optimization methods face challenges such
as low computational efficiency and insufficient solution space exploration ability when deal-
ing with large-scale networks. How to effectively integrate advanced data-driven technology
and intelligent optimization algorithms, and break through the limitations of existing models in
expressing complex network features, has become a current research focus.

In recent years, significant progress has been made in the optimization research of power com-
munication systems at both theoretical and technical levels. Wang et al. focused on model-
ing the channel characteristics of spacecraft direct current (DC) power line communication. By
analyzing the attenuation and noise characteristics of high-frequency signal transmission, they
proposed an adaptive modulation method based on physical layer parameters, which provides
an important reference for optimizing the underlying channel of power line communication.
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However, their model is limited to static scenarios and fails to solve
the complexity of multi-objective collaborative optimization under
dynamic topology [4]. In the field of communication security, Zhang
et al. designed a privacy-preserving communication scheme based
on linkable ring signatures for the V2V power trading scenario,
which ensures the security of data transmission through light-
weight encryption mechanisms. However, their research focuses on
protocol layer design and lacks systematic exploration of the joint
optimization of network resource utilization and transmission effi-
ciency [5]. Furthermore, Zhang et al. proposed a relay node opti-
mization method in non-orthogonal multiple access power line
communication systems, which improves system capacity through
dynamic power allocation. However, their model did not consider
the dynamic reconstruction characteristics of network topology
and did not introduce intelligent algorithms to enhance adaptabil-
ity to complex link states [6]. Sun et al. constructed a distribution
network resource optimization allocation model from the perspec-
tive of power communication network coupling, revealing the
impact mechanism of communication constraints on power sched-
uling. However, their optimization objectives were relatively single,
failing to integrate multidimensional indicators such as reliability,
latency, and resource efficiency, and did not fully utilize the global
correlation characteristics of graph-structured data. Although the
above research has promoted the optimization of power commu-
nication systems in different dimensions, there are still limitations,
such as insufficient adaptability to dynamic scenarios, imperfect
multi-objective collaboration mechanisms, and insufficient mining
of graph structure features. It is urgent to achieve breakthroughs
through cross-domain method fusion and model innovation [7].
Adnan et al. investigated the integrated application of Wavelength
Division Multiplexing (WDM) and Coherent Optical Orthogonal
Frequency Division Multiplexing (CO-OFDM) in Radio over Fiber
(RoF) systems, providing a viable technical solution for high-
capacity data transmission in power communication networks [8].
Additionally, Loeffler explored the use of broadband tunable lasers
in optical filter measurements. This technology offers theoretical
support for dynamic wavelength allocation and signal quality mon-
itoring in power communication networks [9].

The main problems of existing research focus on three aspects:
firstly, traditional graph neural networks (GNNs) have limited abil-
ity to extract multi-scale features from complex networks, making
it difficult to simultaneously consider local details and global topo-
logical correlations; secondly, multi-objective optimization methods
often rely on static weight allocation or independent optimization
branches, resulting in insufficient expression of trade-off relation-
ships between objectives and limited coverage of non-dominated
solution sets; thirdly, the application of attention mechanisms still
remains at the node or edge level in a single dimension, lacking
adaptive modeling capabilities for network dynamic changes and
multi-objective coupling relationships. In addition, existing meth-
ods commonly face problems such as high computational complex-
ity and low optimization efficiency when dealing with large-scale
power communication networks, making it difficult to meet the real-
time and scalability requirements of practical engineering scenarios.

In response to the above challenges, the author proposes a multi-
objective optimization method that integrates improved GNNs and
genetic algorithms (GAs). By constructing a parallel fusion architec-
ture of graph convolution module (GCN) and graph attention mod-
ule (GAT), combined with a dynamic weight adjustment mechanism,

multi-level extraction of network topology features and adaptive
focusing of critical paths are achieved. Design a multi-branch output
structure with reliability, latency, and resource utilization as indepen-
dent optimization objectives, and introduce non-dominated sorting
strategies and dynamic loss weights to balance the competitive rela-
tionship between objectives [10, 11]. At the same time, embedding
the feature encoding ability of GNNs in GAs enhances the directional-
ity of population initialization and mutation operations, and improves
the search efficiency and convergence speed of the solution space.
This method not only effectively integrates the global features and
local dynamic change information of graph-structured data but also
enhances the recognition ability of network bottleneck links and key
nodes through the attention mechanism, providing a new techni-
cal path for multi-objective collaborative optimization of complex
power communication systems. The research aims to promote the
deep integration of GNNs and evolutionary algorithms in intelligent
optimization of power systems through theoretical innovation and
experimental verification, providing theoretical support and practi-
cal reference for the construction of high-reliability, low-latency, and
high-resource utilization power communication networks.

II. RESEARCH ON MODEL CONSTRUCTION AND OPTIMIZATION
METHODS

A. System Architecture Design

1) Analysis of Power Fiber Optic Communication Link Structure:

The power fiber optic communication link is the core part of the
power system communication, mainly responsible for tasks such as
scheduling control, fault protection, and real-time data transmis-
sion. The link relies on fiber optic media, combined with transmis-
sion equipment and protection devices, to construct a multi-level
network structure, which is widely deployed on high-voltage trans-
mission lines [12, 13].

Common optical cables include overhead ground wire, fiber, and
all dielectric self-supporting optical cable (ADSS). Overhead ground
wire fiber combines communication and lightning protection func-
tions and is suitable for high-voltage transmission lines; ADSS instal-
lation is flexible and suitable for medium and low voltage scenarios
[14]. The two often form a hybrid topology structure, such as a ring
network, star network, or tree network, to match the communication
needs of stations with different voltage levels (Fig. 1). The link struc-
ture is divided into four layers, and the typical structural parameters
are listed in Table | to Table IX.

2) Performance Parameter Collection and Feature Extraction:

The performance parameter collection and feature extraction of
power communication networks are the foundation of network
optimization, which can help identify operational hazards, evalu-
ate communication quality, and support scheduling decisions. The
author constructed a multidimensional performance parameter sys-
tem covering the physical layer to the application layer (see Table Il),
and used various methods such as OTDR testing, spectral analysis,
Internet Control Message Protocol (ICMP) detection, etc., to achieve
high-precision acquisition.

Performance feature extraction includes statistical features (such as
mean, standard deviation, quantile, etc.), frequency domain features
(identifying periodic patterns through the Fourier transform), and
topological features (reflecting network structure, such as average
path length, clustering coefficient, etc.).
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Fig. 1. Structure diagram of a power fiber optic communication
link.

The mathematical expression of feature extraction can be summa-
rized as the following formula (1):

X=f(P) M

Among them, X represents the extracted feature vector, P represents
the original performance parameter set, and f represents the feature
extraction function. For statistical features, they can be expressed as
(2):

Xaw = [0(P), o(P), min(P), max(?). 0, (%), (). (7)) @)

Among them, u(P) represents the mean, o(P) represents the standard
deviation, min(P) and max(P) represent the minimum and maximum
values, respectively, and Q,(P), Q,(P), and Q,(P) represent the quartiles.

For time-frequency domain features, Fourier transform and wavelet
transform are used as shown in formula (3):

Xieq ={F(®)

Based on the network topology characteristics, the following key
indicators are defined as formula (4):

,O)EQ} @3)

Xtopo:{cg, Lg, Pgr BC,Eg} (4)

Among them, C, represents the global clustering coefficient, L rep-
resents the average path length, p, represents the network density,
B, represents the betweenness centrality, and E, represents the net-
work efficiency.

In addition, to address the correlation and complex structure
between parameters, the author introduces an improved neural net-
work model that uses the parameters of device nodes as graph node
features, with edges representing logical or physical connections.
Through the information transmission mechanism, it is possible to
more effectively extract the correlation features between nodes [15,
16].

In order to quantify the effectiveness of features, a feature impor-
tance index is introduced as shown in formula (5):

(%)= LZL\R(xi ) (5)

TABLE I. PERFORMANCE COMPARISON BETWEEN FUSION MODEL AND CNN MODEL USED ALONE

Evaluation Indicators Fusion Model CNN + GA Model Performance Differences (%)
Network reliability 93.7 854 +9.7
Average transmission delay (ms) 235 312 —24.7
Resource utilization rate (%) 823 738 +11.5
Optimizing convergence algebra 65 105 —-38.1
Solution time (s) 2385 384.5 —38.0
Pareto solution quantity 42 28 +50.0
Network topology expression accuracy 0917 0.832 +10.2
The ability to handle large-scale networks (time growth rate) 1.35 2.78 -514
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TABLE Il. PARAMETER SETTINGS FOR POWER COMMUNICATION LINKS

Type of Parameter Parameter Range Unit
Bandwidth capacity 10-10000 Mbps
Transmission delay 1-100 ms

Link reliability 0.9-0.9999 -

Cost of use 1-100 10000 yuan/year
Load rate 0.1-09 -

Among them, I(X)) represents the importance of feature X, R(X, Yj)
represents the correlation coefficient t between feature X; and opti-
mization objective Y, and N represents the number of optimization
objectives.

3) Data Preprocessing and Normalization Process

In terms of normalization, considering the differences in perfor-
mance parameter dimensions and distributions, the author adopts
the following three methods:

Min Max Normalization, as shown in formula (6):

X = Xmi
Xnorm = T (6)

Xmax ~ Xmin

Among them, x represents the original data point, x_,, and X,
respectively represent the minimum and maximum values of the
data, X, represents the normalized data, with a value range of
[0,1].

norm

Z-score standardization is shown in formula (7):

X —
Xnorm = = (7)
(o)

Among them, p represents the mean of the data, o represents the
standard deviation, and x___ follows a standard normal distribution.

norm

For severely skewed data, a logarithmic transformation is used as
shown in formula (8):

Xnorm =10g(x +3) (8)

Among them, & is a small positive number to prevent calculation
errors when the original value is 0.

For different types of performance parameters (such as traffic,
latency, bit error rate, topology indicators, etc.), appropriate normal-
ization methods should be selected to improve model processing
effectiveness and indicator expressiveness [17, 18].

In order to further improve computational efficiency and reduce
dimensional redundancy, the author also calculated the correlation
coefficient matrix between features as shown in formula (9):

R, = Cov(Xi.X;) )
GX"GXJ-

Among them, R; represents the Pearson correlation coefficient
between features X; and X;, Cov represents covariance, and o repre-
sents standard deviation.

In addition, the principal component analysis method is used to
reduce the dimensionality of the features, mapping high-dimen-
sional features to a lower-dimensional space while preserving the
main variance information as shown in formula (10):

X' = X-W (10)

Among them, X represents the original feature matrix, W repre-
sents the principal component loading matrix, and X represents the
dimensionality reduced feature matrix.

B. Model Construction Plan

1) Design of Convolutional Neural Network Module:

In order to meet the processing requirements of graph-structured data
in power communication transmission networks, the author designed
an improved module based on a graph convolutional network (GCN)
for extracting topological features and node attribute information in
the network. This module combines spatial graph convolution with a
multi-layer structure and introduces residual connections to enhance
the stability and expressiveness of the model [19, 20].

The core operation of GCN is shown in formula (11):

1 1
H* =o(D 2AD 2H'W") (11)

Among them, H" represents the node feature matrix of the I-th
layer, A=A +1 is the adjacency matrix with self-loops added, D is the
degree matrix of A, W is the learnable weight matrix, and o is the
nonlinear activation function.

In order to improve the training effectiveness of deep networks,
residual structures such as formula (12) are introduced:

TABLE Ill. BASIC CHARACTERISTICS OF POWER COMMUNICATION LINK DATASET

Number of Number Average Node Number of Communication Business Flow Dataset Size
Test System Nodes of Links Degree Equipment Types Type (MB)
IEEE 14 node 14 20 2.86 3 5 25
IEEE 30 node 30 41 2.73 4 8 42
IEEE 57 node 57 80 2.81 5 10 78
IEEE 118 node 118 186 3.15 6 12 165
|IEEE 300 node 300 411 2.74 8 15 380
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TABLE IV. PARAMETER CONFIGURATION OF GENETIC ALGORITHM

Parameter Value Range Optimal Value

Population size 50-500 200

Maximum algebra 50-1000 300

Crossover probability 0.6-09 0.8

Mutation probability 0.01-0.2 0.05

Elite retention ratio 0.05-0.2 0.1

Championship Selection Scale 2-7 3
LI

H" =o(D 2 AD 2H"W")+H" (12)

At the same time, in order to enhance the perception ability of the
local structure of nodes, an aggregation mechanism is adopted as
shown in formula (13):

b — c(W(') . AGGREGATE") ({h(u'),Vu eN (V)})J 13

The AGGREGATE function represents the aggregation operation of
neighbor node information, and N (v) represents the neighbor set
of node v.

The following is the pseudocode of the core implementation code
Fig. 2.

2) Attention Mechanism Embedding Strategy:

In multi-objective optimization of power communication transmis-
sion networks, the importance of different nodes and their adjacent
edges varies. In order to enhance the sensitivity of the model to key
structures and features, the author introduces a graph attention
mechanism and adopts node-level and edge-level attention strate-
gies to enhance the model’s ability to express topology and attributes.

The calculation of attention coefficient between nodes is shown in
formulas (14) and (15):

e; =LeakyReLU(a' [WhWh; J) "

o :—eXp(eij) (15)

PINRECY

Among them, N (i) represents the set of neighbors of node i, and
LeakyReLU is an activation function that helps to handle negative
input. In this way, the model can adaptively learn the importance of
interaction between nodes [21, 22].

In order to enhance expressive ability, a multi-head attention mech-
anism is introduced as shown in formula (16):

L uh KW
hi = a[K Zk:12je/\/(i)a"w h’j (16)

Among them, K is the number of attention heads, o is the attention
weight of node j to node i under the kth attention head, and W« is the
weight matrix of the kth attention head.

On this basis, further edge attribute information is introduced as
shown in formula (17):

e; =LeakyReLU(a' [WhWh)We; J) (17)

e, (14) incorporates link reliability (R,) and latency (D;) as edge attri-
butes, enabling the model to focus on vulnerable paths (e.g., high-
load links).

The attention coefficients (14-17) explicitly model power-network-
specific features: e;=LeakyReLU(@'[Wh ||Wh||R;||D,]), where R;and
D, are reliability and delay. This allows adaptive weighting of critical
links (e.g., protection signaling paths).

The model parameter settings are shown in Table Ill, and the core
code is shown in Fig. 3.

3) Model Fusion Structure and Output Layer Settings:
In order to meet the multi-objective optimization requirements
of the power communication transmission network, the author

TABLE V. HYPERPARAMETER CONFIGURATION OF IMPROVED GRAPH NEURAL NETWORK MODEL

Hyperparameter Category Hyperparameter Name Value Range Optimal Value
Network structure parameters Number of convolutional layers in the graph Floors 2-6 Floors 4
Hidden layer dimension 32-256 128
Attention head count 1-8 4
Training parameters Learning rate 0.0001-0.01 0.001
Batch size 16-128 64
Training epochs 50-500 200
Regularization parameter Dropout rate 0.1-0.5 0.3
L2 regularization coefficient 0.0001-0.01 0.001
Optimizer parameters Momentum coefficient 0.8-0.99 0.9
€value 1e-8-1e-6 le-7
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TABLE VI. OUTPUT LAYER BRANCH STRUCTURE CONFIGURATION TABLE

TABLE VII. ATTENTION MECHANISM PARAMETER CONFIGURATION TABLE

Branch Layer Activation Output Optimization
Name Structure Function Dimension Objectives
Reliability [128,64,32,1] RelU + Sigmoid 1 Network reliability
branch indicators

Delay [128,64,32,1]  RelLU+RelU 1 Transmission
branch Latency Index
Resource [128,64,32,1] RelLU+ Sigmoid 1 Resource

fork utilization index

designed a structure that integrates GCN and graph attention mod-
ule (GAT), and combined multiple output branches to achieve joint
prediction of reliability, latency, and resource utilization. The pseudo-
code is shown in Fig. 4.

The fusion structure adopts a parallel architecture to achieve fea-
ture complementarity while maintaining module independence. By
weighted fusion of two types of features as shown in formula (18):

Hrusion = 0tHgcen +(1_a)HGAT (18)

Among them, H., and H,; are the output features of GCNs and
graph attention networks, respectively, and a is the learnable weight
parameter.

The weight coefficient a is dynamically generated by the feature
adaptive network as shown in formula (19):

a= G(WaI:HGCNHGAT ]+ ba) (19)

Among them, W, and b, are learnable parameters, and o is the sig-
moid activation function, ensuring that the value of a is between 0
and 1.

After fusion, the features are processed by a multi-layer perceptron
to output three types of target branches as shown in formula (20).
The configuration is detailed in Table IV.

Parameter Parameter Values
Attention head count 8

Attention level 3

Attention dimension 32

Dropout rate 0.2

Activation function LeakyRelU

Residual connection True

Liotal =WiLreliability +W2Lldelay +Wsltesource (20)

Among them, w,, w,, and w; are weight coefficients used to balance
the importance of different objectives.

C.Training and Optimization Methods

1) Selection of Loss Function and Definition of Evaluation Indicators:
In multi-objective optimization modeling, a reasonable loss function
design directly affects the quality of model training and optimization
results. Based on the characteristics of the power communication
transmission network, the author constructed a weighted com-
prehensive loss function as shown in formula (21), which compre-
hensively considers three aspects: network reliability, transmission
delay, and resource utilization:

I—total = aLtopu + BLtrans + yLres (21 )

Among them, q, 3, and y are weight coefficients used to balance the
contributions of the three types of losses, satisfying a+p+y=1.

The topology loss L_topo, transmission performance loss L_trans,
and resource utilization loss L_res are respectively:

1 N N
Liopo == D a2, A0G (B)+(1-Ay)log (1-P)) 2)

TABLE VIII. KEY PERFORMANCE PARAMETERS AND COLLECTION METHODS OF POWER COMMUNICATION TRANSMISSION NETWORK

Level Performance Parameter Collection Method Acquisition Cycle Acquisition Accuracy Data Scale

Physical layer Optical power OTDR equipment 15 minutes 0.01 dBm Millions per day
Physical layer Signal to noise ratio (OSNR) Spectral analyzer 30 minutes 0.1dB Million level/day
Physical layer Bit error rate (BER) SDH equipment 5 minutes 10" Billion level/day
Link layer Frame error rate Network analyzer 1 minute 10° Billion level/day
Link layer Link utilization SNMP protocol 5 minutes 0.1% Millions per day
Network layer Route changes Routing log Real time - Million level/day
Network layer End-to-end delay ICMP detection 1 minute 0.1 ms Billion level/day
Application layer Business availability Business monitoring system 1 minute 0.01% Millions per day
Application layer Quality of experience (QoE) QoE evaluation model 5 minutes 0-5 points Million level/day

OTDR, optical time-domain reflectometer; SDH, Synchronous Digital Hierarchy; SNMP, Simple Network Management Protocol; ICMP, Internet Control Message

Protocol.
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TABLE IX. TYPICAL STRUCTURAL PARAMETERS OF POWER FIBER OPTIC COMMUNICATION LINKS

Type of Parameter Backbone Layer Core Layer Convergence Layer Access Layer
Bandwidth capacity 100G-400G 10G-100G 1G-10G 100M-1G
Transmission distance (km) >100 50-100 10-50 <10
Redundancy requirements (%) 99.999 99.99 99.9 99

Topology Full mesh Ring network/mesh network Double ring/tree like structure Single ring/star shaped
Fiber type G.655/G.654 G.655/G.652 G652 G.652/G.657
Wavelength division multiplexing DWDM DWDM/CWDM CWDM Direct transmission
Protection mechanism 141 hot backup 141 hot backup 1:N cold backup No/simple protection
Delay requirement (ms) <10 <20 <50 <100

DWDM, Dense Wavelength Division Multiplexing; CWDM, Coarse Wavelength Division Multiplexing; ICMP, Internet Control Message Protocol.

1 M 2 As shown in formulas (22), (23), (24), A is the element in the true

Lirans =Mzi=1(-ri =T ) (23) adjacency matrix, P; is the predicted connection probability, and N is

the number of network nodes; T, is the actual transmission delay of

N the i-th path, T, is the target delay, and M is the number of paths; U,

Lres _Nziﬂ‘ui _Uom‘ (24) is the resource utilization rate of node i, and U, is the ideal resource
utilization rate.

1

Algorithm 1 GCNTraining: Training a GCN model
Require: X: Node feature matrix, A: Adjacency matrix, #: Initial parameters
Ensure: : Trained parameters

1: Set Nepochs, learning rate n

2: for i =1 to Nepochs do

3: H«X

4: forl=1to L do

5: /.1 — A+41

6: D « diag (ZJ A.‘j)

7: Anoem — D™12AD1/2

8: Hpew +— ReLU(Aporm HW®)
9: if using residual connection then
10: H « H+ H,,
11: else
12: H « Hpew
13: end if
14: H + Dropout(H)
15: end for

16: loss - ComputeLoss(H,Y')
17: 0 « 0 —n - Vloss

18: end for

19: return 6 « 6

Fig. 2. Pseudocode of residual graph convolution module.




Electrica 2026; 26: 1-15
Zhang et al. Power Optical Fiber Communication System

Algorithm 2 GraphAttentionLayer: Node-level GAT with Edge Features

2: Wh « XW

(’l‘j ¢ =00 if ."l‘.)' - ()

B: (i ¢ softmax;(ei;)

G: @ ¢ Dropout(ay;)

T h: ‘_Z] (l”'”'hj

8: if multi-head attention then
o: h! « Concat({h*})

10: end if

11: return /'

12: end function

3 eij « LeakyReLU(a [Wh;||Wh,||Weei;])
'.

1: function GRAPHATTENTIONLAYER(X, A, FE)

& Linear transform

> Mask non-edges

Fig. 3. Pseudocode of graph attention layer model.

2) Hyperparameter Setting and Training Strategy:

In order to ensure efficient learning of topology and multi-objective
features of power communication networks, the author optimized
the key hyperparameter configurations of GNNs and GAs through
extensive experiments (see Tables V and VI for details) and proposed
a two-stage training strategy and a dynamic adjustment mechanism
for learning rate.

The optimal number of convolutional layers for the GNN is four,
the dimension of hidden layers is 128, and the number of attention
heads is four. In terms of training hyperparameters, a recommended
learning rate of 0.001, batch size of 64, training epochs of 200, drop-
out rate of 0.3, and L2 regularization coefficient of 0.001 effectively
improve the model’s expressive and generalization abilities [23, 24].

The population size of the GA is 200, the maximum number of gen-
erations is 300, the crossover rate is 0.8, the mutation rate is 0.05, and
the elite retention ratio is 0.1.

In order to further improve training efficiency and model adaptabil-
ity, the author adopts a two-stage training method of pretraining
and fine-tuning. The first stage uses historical graph data for gen-
eral training, and the second stage fine-tunes features in the tar-
get scene. The learning rate is dynamically adjusted using a cosine
annealing strategy as shown in formula (25):

Nt = Nmin +1E(nmax ~MNmin )(1 +COS(.::_TEJJ

Algorithm 3 Multi-Branch GCN+GAT Fusion Network (Forward Pass)

1: function FORWARD(X, A)
2: Heeon + GCNModule(X, A)
3: Heoar GATModule(X, A)

4: o — G(VVeightNet([H(;(;N||H(;AT]))
5: Hiysion — a- Hgen + (1 — a) - Hgar

6: Hprocessed <~ MLP ( HfUSiOIl )

7: Urel < ReliabilityBranch(Hpyocessed)

8: Ydelay < DelayBranch(Hpocessed)
9: Ures < ResourceBranch(Hi,rocessed)
10: return grela gdela.ya gres

11: end function

Fig. 4. Pseudocode of multi-branch fusion output.
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Among them, n_ is the learning rate of the t-th round, n,, and n,,,
are the maximum and minimum learning rates, respectively, set to
0.001 and 0.00001, and T is the total training epochs.

In addition, combining data augmentation strategies to enhance
model robustness includes node perturbation, edge perturbation,
and feature noise injection.

The optimizer uses Adam and combines first-order and second-order
momentum weighting, and its update rule is shown in formula (26):

A
mt

-nr (26)
Vi e

Among them, m,and v, are the first-order and second-order moment
estimates of the gradient, respectively, and € is a small constant to
prevent zero division errors.

My =My,

3) Training Convergence and Overfitting Control Methods:

In order to ensure the reliability and generalization ability of the
model in practical applications, the author established a train-
ing convergence evaluation and overfitting control system, which
includes multiple indicators such as training loss, validation loss, and
parameter gradient.

The training and validation losses are defined as equations (27) and
(28), respectively:

L_train=o-L_topo+fP-L_trans+ysL_res (27)
L_val=a-L_topo+B-L_trans+y-L_res (28)

Setting the training/validation loss ratio is used to dynamically
monitor whether the model is overfitting. If the training loss con-
tinues to decrease but the validation loss increases, it indicates an
increased risk of overfitting. Set the warning threshold R<0.7 or trig-
ger an early stop if the verification loss continues to rise for three
rounds [25, 26].

The learning rate (0.001) and population size (200) were identi-
fied as the most sensitive hyperparameters. A smaller learning rate
(<0.0005) slowed convergence, while a larger rate (>0.005) caused
instability. Similarly, a population size <100 reduced genetic diver-
sity, and >300 increased computational cost without significant per-
formance gains (see Appendix A for ablation studies).

D. Complexity and Scalability Analysis

For IEEE 300 nodes, the fusion model achieves linear scalability
(O(N™2)) due to sparse graph processing, with training time stabilized
at ~ 4.2 hours (vs. CNN+GA’s 9.5 hours). Graphics Processing Unit
(GPU) memory usage remains under 18GB, feasible for industrial-
grade servers (see Table IX).

I1l. RESULTS AND ANALYSIS
A. Experimental Design and Dataset Description

1) Experimental Platform and Tool Description:

The author built a comprehensive experimental environment on a
high-performance computing platform, equipped with dual Intel
Xeon E5-2680 v4 processors, 256 GB of memory, 2 TB NVMe SSD,

and 4 NVIDIA Tesla V100 GPUs, and used 40Gbps InfiniBand high-
speed interconnection to meet the parallel computing needs of
large-scale GNNs and GAs [27, 28]. The software environment is
based on Ubuntu 20.04 LTS, with core development tools includ-
ing Python 3.8, PyTorch 1.9.0, PyTorch Geometric, DEAP, MATPOWER,
and PyPSA, supporting model building, power simulation, and data
analysis. In order to evaluate the optimization effect, indicators such
as hypervolume index (HV), average convergence time, and conver-
gence algebra were used. The training process employed the Adam
optimizer and cosine annealing strategy, combined with an early
stopping mechanism to improve training efficiency and stability.
The overall experimental design provided reliable computational
support and evaluation guarantees for multi-objective optimization
[29, 30].

2) Construction and Partitioning of Power Communication Link
Dataset:

The author has constructed a comprehensive dataset of power
communication links, covering IEEE standard systems and actual
communication network topologies, considering multidimen-
sional characteristics such as network structure, node attributes,

Step 1: Collect IEEE Standard
Test System Topology Data

l

Step 2: Assign
Communication Device Types
and Capability Parameters

l

Step 3: Configure Link
Parameters (Bandwidth,
Latency, Reliability) Based on
Real-World Data

|

Step 4: Design
Communication Service
Matrix to Reflect Node-to-
Node Requirements

l

IEEE 14/30/57/118/300 Node
Systems

l

Parameter Allocation Based
on State Grid and China
Southern Grid Standards

|

Parameter Ranges &
Mathematical Models:\n*
R_net=[](i_j € E)r_ij +
y_ij)\n* D_ij =d_prop_ij +
W(C_ij(1-p_ij))

l

Dataset Partitioning\n(8:1:1
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A —

Extended Test Set\n(50 New
Topologies)

_—

Training Set ‘ Validation Set Test Set

Fig. 5. Construction process of power communication link dataset.
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and link parameters. The construction of the dataset includes four
major steps: basic topology collection, device parameter alloca-
tion, link indicator setting (such as bandwidth, latency, reliabil-
ity), and business matrix design (see Fig. 5). The final formation
includes five types of network structures with 14 to 300 nodes,
supporting multi-complexity algorithm testing. The relevant fea-
tures are shown in Table VI, and the link parameter configuration
is shown in Table VIII. In order to improve the effectiveness of algo-
rithm training, the dataset is divided in an 8:1:1 ratio and expanded
with 50 new topology structures, accompanied by a mathematical
model for computable link reliability Rnet and total transmission
delay Dij [31, 32].

3) Compare Algorithm Settings With Benchmark Model Selection:

In order to comprehensively verify the performance of the
multi-objective optimization method based on improved GNN
and GA proposed by the author (IGNN-GA), the author selected
seven typical algorithms for comparison, including three tradi-
tional evolutionary algorithms (Non-dominated Sorting Genetic
Algorithm Il [NSGA-II], Multi-Objective Evolutionary Algorithm
Based on Decomposition [MOEA/D], Strength Pareto Evolutionary
Algorithm 2 [SPEA2]), two machine learning enhancement algo-
rithms (Machine Learning assisted Multi-Objective Evolutionary
Algorithm [ML-MOEA], Deep Reinforcement Learning assisted
Multi-Objective Evolutionary Algorithm [DRL-MOEA]), and two
GNN algorithms (Graph Convolutional Network assisted Multi-
Objective Evolutionary Algorithm [GCN-MOEA], Graph Attention
Network assisted Multi-Objective Evolutionary Algorithm GAT-
MOEA]), and uniformly set parameters to ensure fairness (see Tables
I1-V). At the same time, a theoretical benchmark model was con-
structed as an ideal reference, combined with multiple evaluation
indicators (HV, Generational Distance [GD], Inverted Generational
Distance [IGD], spread, runtime) to comprehensively evaluate the
performance of the algorithm [33, 34]. The experiment covers |IEEE
standard systems and multiple types of random topologies, with
a focus on analyzing the robustness and generalization ability in
large-scale networks, comprehensively verifying the results of
IGNN-GA in multi-objective optimization of power communication
transmission networks.

Proposed IGNN-GA outperforms NSGA-IIl in hypervolume (HV: 0.82
vs. 0.76) and MOEA/D-STM in convergence speed (300 vs. 450 gen-
erations), attributed to GNN-guided population initialization.

Business flow types include protection signals (e.g., differential pro-
tection), Supervisory Control And Data Acquisition (SCADA) control
commands, Phasor Measurement Unit (PMU) data, video surveil-
lance, voice communication, etc. A full list is provided in the supple-
mentary material.

B. Performance Indicator Evaluation Results

1) Comparison of Accuracy and Mean Square Error:

The performance of improved GNNs and GAs (improved GNN-GA)
in multi-objective optimization was evaluated and compared with
mainstream algorithms such as GA, Particle Swarm Optimization
(PSO), GNN-GA, and DRL. Experiments were conducted on IEEE 30,
118, and 300 node power communication networks using two met-
rics: accuracy and mean square error (MSE). The results showed that
the improved GNN-GA achieved the highest accuracy and lowest
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error in different network scales, demonstrating stronger optimiza-
tion accuracy and stability [35].

Especially in medium to large-scale networks (such as 118 nodes
and 300 nodes), as shown in Fig. 6, the improved GNN-GA accuracy
reached 87.5% and 81.3%, respectively, significantly better than
other algorithms. The MSE index also shows the minimum value,
indicating that it can more effectively capture the complex structural
characteristics of communication networks, has good generalization
ability and scalability, and is suitable for complex power communica-
tion optimization scenarios.

2) Performance Differences of Various Models Under Different

Link States:

In order to evaluate the stability and adaptability of algorithms under
different link states, the author divided the link states into normal,
mild congestion, moderate congestion, and severe congestion, and
simulated the changes in link load and delay on the IEEE 118 node

Fig. 6. Comparison of accuracy and mean square error of different

algorithms on networks of various sizes.
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Fig. 7. Comparison of optimization effects of various algorithms under different link states.

system. The performance of each algorithm on three optimization
objectives (reliability, delay, resource utilization) was compared (see
Fig. 7). The results showed that the performance of all algorithms
decreased with increasing congestion, but the improved GNN-GA
remained optimal in all states, especially under severe congestion,
with a reliability of 79.3%, the lowest transmission delay of only 68.5
ms, and the highest resource utilization rate of 65.7%.

As congestion increases, the performance gap between improved
GNN-GA and traditional algorithms further widens, demonstrating
its stronger generalization ability and convergence efficiency in
complex environments [36]. Among them, the improved GNN-GA
reduced transmission latency by 26.5% compared to GA in severe
congestion conditions, thanks to its bottleneck link identification
and dynamic optimization capabilities after introducing attention
mechanisms, reflecting its application advantages in optimizing
large-scale power communication networks.

3) Analysis of Model Stability and Generalization Ability:

The performance of improved GNN-GA was compared with other
mainstream algorithms in terms of stability and generalization ability
(see Fig. 8). The results show that the improved GNN-GA has the low-
est standard deviation in network reliability, latency, and resource
utilization, significantly better than traditional GA and PSO, indicat-
ing that its convergence performance is more consistent in multiple
runs and is suitable for power communication system scenarios that
require high stability of the results.

Inthe performanceretention tests on five types of untested networks,
the improved GNN-GA also showed the best performance, especially
maintaining an optimization effect of 87.8% in dynamic networks,
which is 22.7 percentage points higher than GA. In addition, as the
complexity of the network increases, the performance degradation
of improved GNN-GA is minimized, highlighting its robustness in
complex and changing environments. Overall, improving GNN-GA

has excellent stability and generalization ability, making it suitable
for multi-objective optimization tasks in power communication
transmission networks under different environments.

C. Ablation Experiment and Model Mechanism Validation

1) Performance Change Analysis After Removing Attention
Mechanism:

Designed ablation experiments to compare the optimization effects
of two models, one with an attention mechanism and the other with-
out an attention mechanism, under the same conditions. The results
in Fig. 9 indicate that the complete model outperforms the ablation
model in key indicators such as network reliability, delay control, and
resource utilization. In particular, the reliability is improved by 6.5
percentage points, delay is reduced by 26.8%, and resource utiliza-
tion isimproved by 7.2%. In addition, the optimization process of the
complete model converges faster, and the solution time is shorter.

In terms of multi-objective optimization ability, the complete model
can generate more non-dominated solutions (42 vs. 31), and the
average value of the objective function is also better (0.853 vs.
0.761), demonstrating stronger solution space exploration ability.
When facing a larger 300-node network, the performance of the
complete model decreased by only 8.3%, while the ablation model
decreased by 17.5%, further verifying the significant effect of the
attention mechanism on improving model adaptability.

2) Compatrison of the Effects of Using CNN Alone and Fusion Models:
In order to verify the advantages of the fusion model (improved
GNN combined with GA) in optimizing power communication trans-
mission networks, the author conducted comparative experiments
with the traditional CNN + GA model. Both were tested on the same
dataset and parameter settings. The results show that the fusion
model outperforms the CNN model in core indicators such as net-
work reliability (93.7% vs. 85.4%), transmission delay (23.5 msvs.31.2
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Fig. 8. Comparison of stability and generalization ability of various algorithms.

ms), and resource utilization (82.3% vs. 73.8%), with a 38% improve-
ment in convergence speed, a 38% reduction in solution time, and
a 50% increase in the number of non-dominated solutions (see
Table IX), demonstrating stronger optimization ability and conver-
gence efficiency.

This difference arises from the differences in the model’s ability to
handle graph-structured data. CNN needs to convert topology into
adjacency matrix processing, which makes it difficult to capture
long-range dependencies; GNN can directly express global topo-
logical features through attention mechanisms and graph message
passing operations. At the same time, in large-scale networks, the
fusion model exhibits better scalability: when testing expanded
from 118 nodes to 300 nodes, its computation time only increased

by 35%, while the CNN model grew by 178%. Overall, the fusion
model outperforms the CNN model in terms of accuracy, efficiency,
and scalability, making it more suitable for multi-objective optimiza-
tion in complex power communication transmission networks.

3) Evaluation of the Effectiveness of Different Types of Attention
Mechanisms:

The performance of the self-attention mechanism, channel atten-
tion mechanism, and no attention model in multi-objective optimi-
zation was compared (see Fig. 10). The experimental results show
that the self-attention mechanism performs the best in all core
indicators, with network reliability reaching 93.7%, average latency
reduced to 23.5 ms, and resource utilization rate reaching 82.3%,
significantly better than the channel attention mechanism (91.2%,

e HoYw

Fig. 9. Analysis of performance changes after removing the attention mechanism.
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Fig. 10. Performance comparison of different types of attention
mechanisms.

25.3 ms, 79.5%) and no attention model (87.2%, 29.8 ms, 75.1%). In
addition, the Pareto solution count and node importance recogni-
tion accuracy of the self-attention model are also far ahead, demon-
strating stronger structural learning and optimization capabilities.

Further analysis reveals that the self-attention mechanism is more
suitable for handling complex graph-structured data, such as power
communication networks, due to its ability to model global depen-
dency relationships. Although its model parameters are relatively
high (246 000 vs. 213 000 channel attention), the performance
degradation on large-scale networks (such as 300 nodes) is smaller,
demonstrating stronger scalability. In contrast, although the chan-
nel attention mechanism has slightly lower performance, it is com-
putationally more efficient and suitable for resource-constrained
environments.

IV. CONCLUSION

The multi-objective optimization method proposed by the author,
which combines improved GNNs and GAs, exhibits excellent perfor-
mance in the complex graph structure scenario of power communi-
cation transmission networks. By constructing a fusion architecture
that includes GCN and GAT modules, and designing multi-branch
outputs to achieve multi-objective prediction, the model’s topology
learning and structural expression capabilities have been effectively
enhanced. The experimental results show that compared with tra-
ditional evolutionary algorithms (such as GA, PSO) and deep mod-
els (such as CNN +GA), the fusion model has significant advantages
in multiple key indicators, such as network reliability, transmission
delay, and resource utilization. The proposed method demonstrates
adaptability to dynamic topologies, such as fault-reconfiguration
scenarios (tested in an IEEE 118-node with 20% random link failures).
The attention mechanism enables real-time weight adjustment
for disrupted paths, maintaining >85% reliability under topology
changes (see Section 3.3.3). Future work will extend this to mobile
power Internet of Things (IoT) networks.

The ablation experiment further verified the key role of the atten-
tion mechanism in improving optimization performance, especially
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the self-attention mechanism, which has more advantages in node
importance recognition and non-dominated solution search. The
model can still maintain high optimization accuracy and stability in
the face of complex conditions such as link congestion and network
topology changes, demonstrating good generalization ability and
scalability.

In addition, the author systematically optimized feature engineering,
normalization processing, loss function design, and training strate-
gies, and combined multi-source data collection and dimensionality
reduction methods to effectively improve the efficiency of model
training and prediction accuracy. In summary, the method proposed
by the author provides a theoretical basis and practical path for the
intelligent optimization of power communication systems, with
good engineering application prospects, and also provides a refer-
ence for the in-depth research of GNNs in power systems.
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