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ABSTRACT

Cognitive electronic warfare (CEW) will soon replace conventional electronic warfare (EW) systems in the 
operational area. Although the CEW concept is utilized on various platforms, it has primarily emerged in military 
air platforms. Radar warning receiver (RWR) applications are essential in the CEW concept. Effective RWR systems 
accurately identify radar emitters in complex and dynamic environments, which is critical for situational awareness 
of air vehicle systems. systems provide information to countermeasure systems, increasing operational success by 
neutralizing enemy radar and defense systems. To sense the threats and apply appropriate countermeasures, 
such as jamming or dispensing chaff, requires a quick response and accurate RWR processes. RWR processes 
are summarized as receiving, signal detection, deinterleaving, labeling, and emitter identification. This study 
investigates the application of machine learning (ML) techniques to the emitter identification process. The 
research demonstrates significant improvements in emitter identification accuracy and distance determination 
by using ML algorithms. The findings suggest that CEW strategies incorporating adaptive learning models can 
enhance RWR system performance in identifying and categorizing emitters, even in dense Radio frequency (RF) 
environments. In the trials, it is observed that while the decision tree, ensemble bagged, and support vector 
machines achieved 100% success in the classification step, the Gaussian method was the most successful, with 
a mean absolute percent error of 1.6 in the distance calculation step using regression. These results suggest a 
promising direction for developing more intelligent and resilient EW systems.
Index Terms—Classification, electronic warfare, machine learning, radar warning receiver (RWR), regression

I. INTRODUCTION

The conventional operation of current airborne self-protection electronic warfare (EW) systems 
uses defined preprogrammed radar warning receiver (RWR) processes in a similar sequence. 
However, the potential of machine learning (ML) methods to revolutionize this process is 
immense [1]. These methods can scan the predefined bands, determine the signal activities, 
deinterleave and label the signals, and constitute an active emitter track list with unprecedented 
accuracy and speed. They can then compare it with the active emitter track list using the emitter 
identification data and identify threat radars, offering a hopeful future for RWRs [2].

Once the emitter type is identified, an appropriate preprogrammed electronic countermeasure 
(ECM) technique is selected and applied to effectively neutralize, deceive, or avoid the threat 
posed by the emitter. These ECM methods include preset noise, repeater noise, deception jam-
ming, chaff dispensing, towed or expandable decoys, and evasive maneuvering [2]. The noise-
based techniques have become less effective as radars advance from fixed analog systems to 
programmable digital versions with unpredictable behaviors and flexible waveforms. Deception-
based methods are more effective against modern radars; moreover, jamming with cognitive 
electronic warfare (CEW) is an emerging technology to neutralize radar systems [3]. The need 
for new jamming approaches is evident as radars are expected to pose an even more significant 
challenge in the future, with their ability to detect surroundings and adjust their transmissions 
and signal processing to optimize performance and reduce interference.

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

•	 RWR subsystems are central to Cognitive 
Electronic Warfare (CEW) architectures, yet 
conventional rule-based processing pipelines 
often face limitations in accurate emitter 
identification and range estimation under 
dense and dynamic RF conditions.

WHAT THIS STUDY ADDS ON THIS 
TOPIC?

•	 This study empirically demonstrates 
that machine-learning-driven emitter 
identification can achieve near-perfect 
classification performance, outperforming 
traditional deterministic methods in complex 
electromagnetic environments.By integrating 
regression-based distance estimation, the 
study shows that CEW-oriented RWR systems 
can achieve high-precision range prediction 
(MAPE = 1.6%), highlighting the potential 
of adaptive learning models to enhance the 
intelligence, robustness, and responsiveness 
of next-generation electronic warfare systems.
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The capability to detect and apply appropriate countermeasures 
to new and undefined radar threats in tactical environments has 
recently been studied. This can be achieved primarily due to the 
potential of ML in EW. Cognitive electronic warfare systems are 
enabling a shift from today’s manual-intensive, lab-based pre-
programming development approach to an adaptive, in-the-field 
systems approach. These conceptual systems will achieve this by 
developing novel ML algorithms and techniques that can rapidly 
detect and characterize new radar-guided threats, dynamically 
synthesize new countermeasures, and provide accurate battle 
damage assessment based on over-the-air observable changes in 
the threat.

Cognitive electronic warfare is a concept that encompasses various 
applications of EW, and in this study, the focus is on RWR units, a part 
of self-protection EW (SPEW) systems. The most common RF parts 
of the SPEW systems are RWR, self-protection jammer (SPJ), and 
chaff part of the countermeasure dispenser system (CMDS). The CEW 
applications are summarized as follows [4]:

•	 Radar warning receiver systems aim to detect, intercept, identify, 
and locate radar-guided threats.

•	 Self-protection jammer systems use RF energy to degrade or deny 
the adversary’s radar-guided systems’ detection and tracking 
performances.

Radar warning receiver functions can be categorized under general 
processes such as signal detection, classification, and identification. 
The primary operational RWR requirement, which drives new tech-
nological developments, is to obtain immediate and accurate infor-
mation about environmental threat emitters. For this purpose, RWRs 
conduct signal detection, deinterleaving, signal labeling, and emit-
ter identification (EID). Signal detection is closely related to receiver 
(Rx) capabilities, and technological advancements in RF components 
are crucial. Additionally, adaptive and intelligent scanning method-
ologies [5] and digital Rx in RWR systems also increase detection 
capabilities [6, 7].

Joshi et al. demonstrated how frequency-domain features extracted 
via spectral analysis can successfully differentiate between hazard-
ous and non-hazardous zones, underscoring the potential of such 
techniques in cluttered or ambiguous signal scenarios. Motivated by 
this perspective, the present study focuses on applying spectral and 
temporal analysis techniques within RWR systems, where the timely 
and accurate deinterleaving of interleaved radar pulse sequences is 
essential. By adapting spectral processing methodologies to identify 
and group emitter pulses, this work aims to enhance emitter recog-
nition accuracy and support real time ECM decision-making. Thus, 
the proposed approach extends the advantages of spectral analysis 
from ground penetrating radar applications to the domain of air-
borne EW systems [8].

Deinterleaving is another essential and much-studied part of the 
RWR process. The conventional methods for deinterleaving radar 
signals are based on these pulse description words (PDWs). Some 
methods were implemented using image processing techniques, 
such as connected component labeling-based clustering [9]. 
Additionally, artificial intelligence (AI)-dependent methods were 
developed for deinterleaving [10, 11]. Utilizing AI in the deinterleav-
ing process has contributed significantly to the CEW concept. After 
deinterleaving, the signals are labeled and grouped. This process 
turns deinterleaved signals into potential threat tracks. The signal 

labeling process is intermediate and highly straightforward. Thus, 
not much novelty can be found in the scientific literature.

Emitter identification is the last and maybe the most critical part of 
the process. The published literature contains a wealth of research 
on EID. One prominent conventional method for the EID process is 
parameter matching [12], which involves comparing signal charac-
teristics obtained by measurement with a known radar database to 
identify radar emitter attributes. Another prevalent method for EID 
is based on a statistical approach. Moreover, some methods present 
a combination of various statistical methods that are applied and 
modified to meet the requirements [13]. These methods have the 
advantage of giving prompt responses and are straightforward to 
implement. However, they are overly reliant on prior knowledge and 
need to improve their adaptive structure skills.

With the development of the CEW concept, the utilization of AI 
algorithms in the EID process has increased [14, 15]. Moreover, 
neural networks [16], support vector machine (SVM) [17], extreme 
learning machines [18], k-nearest neighbor (KNN) [19], intuitionistic 
fuzzy information tri-training classification [20], and deep learning 
algorithms [21] have been presented theoretically in the EID pro-
cess. Although numerous academic studies have been conducted, 
CEW’s operational engagement remains limited and is still under 
development. Moreover, there has not been a study on determining 
both threat identification and range estimation together by using 
ML techniques. In this study, the focus is on this part of the CEW 
concept.

The literature survey reveals that studies on ML techniques applied 
to RWR processes are predominantly conceptual and theoretical. 
The novelty of this study lies in proposing a practical solution with 
improved performance. The most effective ML methods in threat 
radar identification and range detection are suggested. For this pur-
pose, ML techniques are utilized for classification and regression in 
the EID process, which is part of the SPEW systems’ CEW concept. 
The contribution to the RWR process is the application of ML to 
obtain decision support, as shown in Fig. 1.

A realistic pulse radar data set (or emitter library) is strived to be gen-
erated, and the performance of different classification and regres-
sion step methods is assessed to create methods for projecting the 
design of SPEW systems that can be used in actual operations.

This study improves broadcaster detection and range estimation 
in complex and dynamic RF environments by integrating ML tech-
niques into RWR systems. The main contributions are as follows:

•	 The dataset used in the study was designed to reflect realistic 
radar scenarios and optimized through preprocessing steps. This 
approach provides a more comprehensive and reproducible data-
base compared to existing studies in the literature.

•	 Adaptive learning models strengthen CEW systems, making them 
more resilient, intelligent, and capable of effectively responding 
to diverse threats.

•	 The accuracy and reliability of broadcasters were improved using 
decision tree (DT), ensemble, and SVM algorithms.

•	 Innovative regression approaches were applied to increase the 
accuracy of broadcaster range determination.

The paper is organized as follows: Section 2 provides a general 
understanding of the EID and its role in the RWR process. Section 3 
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Fig. 1.  (a) Radar warning receiver details. (b) The contribution to the radar warning receiver process.
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presents the ML methods that are used in this study. Section 4 gives 
the experimental research and performance of different techniques. 
The paper concludes with a summary in Section 5.

II. EMITTER IDENTIFICATION PROCESS

The RF part of airborne SPEW systems comprises a passive RWR 
and countermeasures (CMs) subsystems, including SPJ, towed or 
expandable decoys, and CMDS systems. These systems depend 
on the RWR information to maneuver or utilize different CMs. The 
RWR subsystem is the most fundamental part of all SPEW systems 
and the emerging point for the CEW concept. Quick, clear, and 
accurate RWR data enables pilots, crew, and the airborne platform 
to take the proper precautions, which can be considered lifesav-
ing. These precautions might be conducted manually by pilots, 
such as evasive maneuvering, decoy usage, manual, or semi-
automatic chaff dispensing. On the other hand, they can be auto-
matic CMs, activated by the RWR information, such as preset or 
repeater noise jamming, deceptive jamming, or automatic chaff 
dispensing.

Fig. 1 summarizes a general RWR process. Although there may be 
variations in different applications, the figure demonstrates the com-
pulsory functions. Radar signals in the electromagnetic environment 
are detected by the Rx unit, which comprises an antenna group, sig-
nal processing components, and various sub-Rx units. The RF signals 
are processed in the Rx. At the end of the Rx process, radar pulses 
are defined by PDWs, which include radio operating frequency, time 
of arrival, direction of arrival, pulse repetition interval, pulse width, 
intra-pulse bandwidth, and pulse modulation. Generally, PDWs 
express interleaved sequences. Deinterleaving is necessary to sepa-
rate these sequences and extract the pulse sequences from individ-
ual radar transmitters. Deinterleaving interleaved pulse sequences 
is a critical technology in radar signal processing because modern 
radar environments are often dense and complex, and multiple emit-
ters transmit overlapping signals. Effective separation is an essential 
criterion in EW systems. It enables the separation and identification 

of individual emitter sources, which is necessary for accurate threat 
assessment, situational awareness, and real time decision-making in 
EW systems.

The deinterleaving process produces pulse groups belonging to dif-
ferent emitters in the environment. These pulse groups are referred 
to as the emitter descriptor word (EDW). Each EDW is further pro-
cessed to determine the active emitter file (AEF) at the time being. 
The AEF process is achieved during the mission. There is another 
process for SPEW systems, known as pre-programming. This process 
identifies possible radar threats in the mission region, and the opera-
tional methods for RWR and CMs are defined. The list of threats in 
the mission region is called the emitter library. The obtained AEF and 
emitter library data are compared for possible matches. This process 
involves the EID, and a performance analysis for the EID is proposed.

After the EID process, active emitter tracks are identified, and the 
established emitter list (IEL) is determined. The IEL data is presented 
to the crew via displays and provides some control capabilities. Pilots 
may execute evasive maneuvers according to established opera-
tional procedures. Also, if defined in the pre-programming, one or 
more CM systems are automatically engaged in the operation.

III. MACHINE LEARNING METHODS APPLIED TO THE EMITTER 
IDENTIFICATION PROCESS

Over the last decade, integrating ML techniques into RWR processes 
has been a trend to increase accuracy and reduce processing time. 
Especially, the literature has some studies on the EID process [20]. This 
study presents the application of ML techniques to the EID process 
of RWR systems using realistic radar data. In this aspect, the study 
approach takes one more step for real applications. Fig. 2 digests the 
study’s flowchart. In the first stage, a generic EID that was obtained 
from open sources is established. Then, this information is used with 
various ML techniques for classification and regression step meth-
ods. The classification process is used to predict the type of radar, 
and regression provides the distance information. Furthermore, the 

Fig. 2.  Radar warning receiver process with its functions.
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classification and regression accuracies demonstrate the perfor-
mance of ML techniques for the RWR operation.

A. Emitter Identification Definition
The radar EID dataset is created using open-source, well-accepted 
databases for radar and EW [22] and [23]. In these sources, no 
exact values are provided; instead, intervals or approximate values 
are given. In this study, the generic radar parameters are made as 
close as possible to the real radar counterparts. Nine features in the 
EID database are used. A portion of the EID dataset is presented in 
Fig. 3 as an example. For the study, an EID database was prepared 
that included 756 lines.

The first column is dedicated to radar nomenclature, and the remain-
ing nine columns are used as predictors. The features include techni-
cal parameters in a radar receiver system. Table I contains descriptions 
of the features. Here, it would be beneficial to mention the receiver 
(Rx) amplitude column. This information is not generated from open-
source data but instead extracted from other parameters. The ranges 
and related Rx power amplitudes are calculated in MATLAB by using 
the one-way radar in (1), as follows:

P
P G G c

fR
RWR

Tx Tx RWR�
� �

2

2
4�

	 (1)

where PRx: Radar emitted power at the RWR Rx (W)

PTx: Radar transmitted peak power (W)

GTx: Radar transmitter (Tx) antenna gain (unitless)

GRWR: Radar warning receiver antenna gain (unitless)

c: Speed of light (3x108 m/s)

f: Radar operating frequency (Hz)

R: Range between the radar and RWR (m)

The PTx, GTx, and f values are taken from the EID database. The 
ranges are selected from four different values: 40, 20, 10, and 5 
km, which are similar to those found in practical applications. In 
fact, in various systems, Rx power levels can be calculated for dif-
ferent distances. However, some milestones must be selected for 

Fig. 3.  Various sections of the generic emitter identification database, for example.
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establishing the database. For this study, the RWR Rx antenna gain 
is selected as 3.16 (or 5 dB).

The correlation matrix is one of the best methods for examining the 
relationships between dataset features. In the correlation matrix, 
the matrix elements take values between −1 and 1, indicating the 
strength and direction of the linear relationship between the two 
parameters. A high positive correlation of 0.7551 exists between the 
Radar Parameter and Frequency, as well as Gain and Rx Amplitude. 
This indicates that both pairs of parameters are closely related; when 
one increases, the other also increases in value.

There is a negative correlation between Beamwidth and Gain and Rx 
Amplitude and Frequency, which indicates that the two parameters 
move in opposite directions. Low correlation coefficient values are 
observed between the pulse repetition frequency (PRF) and other 
parameters, suggesting that PRF has a weak relationship with these 
parameters.

B. Classification Step Methods
1) K-Nearest Neighbors:
The KNN algorithm is used in regression and classification problems 
in supervised ML models, where predictions are made based on the 
similarities of observations. Euclidean distance, Manhattan distance, 
Minkowski distance, and Hamming distance metrics can be used to 
measure distances in the KNN algorithm; in this study, Euclidean dis-
tance was preferred [shown in (2)].

x x y
i

k

i i� �� �
�
�

1

2
	 (2)

The KNN algorithm identifies k observation units closest to the obser-
vation unit in question [24, 25]. These k observation units and their 
dependent variables are then used to predict the relevant observa-
tion (Fig. 4). This process is critical in real-world scenarios because 
radar signal data are often complex, noisy, and nonlinear. By con-
sidering the nearest neighbors, KNN adaptively captures local pat-
terns and variations in the data, providing robust predictions even 
in the presence of noise or outliers. Its nonparametric nature allows 
it to operate effectively without prior assumptions about data distri-
bution, making it suitable for practical applications such as emitter 
detection in dynamic operational environments.

All continuous-valued features are scaled to the range [0, 1] using 
min-max normalization to provide a fair contribution to the Euclidean 
distance calculation, given the distance-based nature of the algo-
rithm. During the classification process, the nearest 𝑘 neighbors for 
each sample are determined, and label estimation is made by the 
majority voting method. The value of 𝑘 is set to 10. It is optimized by 
a cross-validation method. The nonparametric structure of the KNN 
algorithm is preferred as a suitable classifier for emitter detection 
from radar signals, mainly because it does not require prior knowl-
edge about the data distribution.

2) Decision Tree and Ensemble Bagged:
A DT is a fundamental and widely used method in ML due to its 
simplicity and interpretability. They work by recursively splitting a 
dataset into subsets based on the value of input features, creating a 
tree-like structure where each node represents a test on an attribute 
and each branch represents the outcome of the test. The process 
continues until a stopping criterion is met, such as a maximum tree 
depth or a minimum number of samples per leaf [26].

TABLE I.  DATASET DETAILS

Feature Explanation Range

Radar nomenclature Radar type - classification target 1–28

Frequency The operating frequency of the radar - predictor 1.215–16 (Hz)

Pulse width The duration of time a radar pulse is transmitted - predictor 0.1–1200 (µs)

Gain The radar’s antenna gain - predictor 30–45.5 (dB)

Range The distance at which the RWR receiver detects a radar threat - regression target 5000–40000 (km)

Peak power The peak Tx power level emitted by a radar - predictor 2–1500 (W)

PRF The number of pulses transmitted by the radar per second - predictor 0.146–125 (Hz)

Rx amplitude The strength of the signal power received by the radar - predictor −13.82 to 59.9 (V)

Beamwidth The angular width of the radar antenna beam - predictor 1–5.54 ()

Scan type The radar antenna scan pattern - predictor 1–10
1: Circular
2: Sectoral
3: Raster

4: Helezonic
5: Conical
6: Spiral

7: Lobe Switching
8: Beam on target

9: Monopulse
10: Track-While-Scan (TWS)

PRF, pulse repetition frequency; RWR, radar warning receiver; Rx, receiver; Tx, transmitter.
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Decision trees offer several advantages, including interpretability, 
the ability to handle nonlinear relationships, and the ability to deter-
mine feature importance. The resulting model is easy to understand 
and visualize, which is crucial for applications that require trans-
parency. Decision trees can also capture nonlinear relationships 
between features and the target variable. Decision trees indicate 
which features are most important for prediction.

However, they also have some limitations, like overfitting and insta-
bility. Ensemble methods such as Random Forests and Gradient 
Boosting are often used to mitigate these issues. These methods 
combine multiple DTs to create a more robust and accurate model. 
For example, Random Forests build multiple trees using random 
subsets of the data and features and then combine their predictions 
to improve generalization [27].

In the task of identifying broadcasters based on radar parameters, 
the DT algorithm was preferred due to its advantages, including the 
explainability and transparency of its decision rules. The tree struc-
ture was created by determining the feature that provides the most 
information gain for classifying the target variable as the root node, 
and then dividing it according to the Gini index criteria in the sub-
sequent branches. To prevent overfitting of the model, parameters 
such as maximum depth, minimum number of samples, and pruning 
were optimized experimentally.

To further enhance the performance and generalizability of DTs, 
the ensemble bagging (bootstrap aggregating) method was also 
used in this study. The Bagging approach is based on combining the 
outputs of these models by creating multiple DTs on different ran-
dom subsets of the training data. In classification problems, it aims 
to increase the success rate by combining the predictions of the 
trained trees from each subset with the majority vote. It increases 
the accuracy and stability of the model by reducing the tendency of 

DTs to overfit. It also offers lower variance compared to a single DT. 
This study consists of 30 medium-sized DTs trained on data subsets 
created by the bootstrap sampling method. Splitting operations in 
each tree were performed according to the Gini diversity index cri-
terion; the default minimum number of samples for leaf nodes was 
set to 1. The complexity of the trees was controlled with a limited 
number of splits (MaxNumSplits), and the decision mechanism was 
structured according to the principle of equal weighted majority 
voting of all trees. With this structure, it was aimed to benefit from 
the features of providing a balanced and reliable model perfor-
mance in terms of both high classification accuracy and prevention 
of overfitting.

3) Support Vector Machines:
An SVM is a supervised learning algorithm often used in classifica-
tion and regression analyses. The primary goal of SVM is to identify a 
hyperplane that optimally separates data points into distinct classes 
[28]. This hyperplane is the plane that makes the most significant 
separation between classes and maximizes the distance, which is 
referred to as the margin. When separating the data with this plane, 
SVM uses the data points closest to the decision boundary, called 
support vectors. These vectors are critical points that increase the 
model’s generalization ability.

An SVM can also work effectively on nonlinear datasets. In this case, 
kernel functions, such as linear, polynomial, radial basis function, 
and sigmoid functions, are used. Kernel functions transform the data 
into a higher-dimensional space, making it linearly separable. The 
choice of kernel functions has a significant impact on the model’s 
performance and is often determined by the characteristics of the 
dataset. One of the basic assumptions of SVM is that all examples in 
the training set are independently and identically distributed [29].

Support vector machine performs effectively on high-dimensional 
datasets and has high generalization ability, meaning it does not 
overfit the training data. Thanks to its kernel functions, it can also 
model nonlinear boundaries. However, training time and memory 
usage may increase for large data sets. Hyperparameter selection is 
complex and can significantly affect the model’s performance. An 
SVM is a powerful and flexible algorithm that performs better when 
used correctly and with carefully tuned parameters. However, its 
complexity and the sensitivity of its settings require users to be care-
ful and knowledgeable.

C. Regression Step Methods
1) Gaussian Process Regression:
Gaussian regression, also known as GPR, is a powerful and flex-
ible method used in statistical ML [30–32]. It models the behavior 
of a particular function or system and makes predictions based on 
observed data. This method is beneficial for complex and high-
dimensional data.

Gaussian regression is a continuous random process in which each 
point is associated with other points through a covariance function, 
typically represented by a covariance matrix. Gaussian regression 
assumes that all possible function values fit a Gaussian distribution; 
the function value at any point follows a standard distribution with 
the values of other points. The covariance function identifies depen-
dencies or similarities between data. The commonly used covariance 
function in this study is the Gaussian kernel. The covariance function 
is a parameter that calculates the similarity between two data points 
based on their distance.

Fig. 4.  K-nearest neighbor classification methods approximation 
(k = 6).
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For this study, the GPR method is applied for distance estimation 
from continuous outputs based on radar parameters. The statistical 
nature of GPR provides advantages against noisy signals encoun-
tered in EW environments by providing not only point estima-
tion but also an uncertainty range regarding the estimation. The 
model is trained with a rational quadratic GPR configuration, and 
a constant basis function and a rational quadratic kernel function 
are used. With the isotropic kernel preference, an equal variance 
assumption is made in all directions, and kernel scale, signal stan-
dard deviation, and sigma parameters are automatically optimized. 
In addition, optimization of numerical hyperparameters is enabled, 
and input data is standardized before modeling. This structure pro-
vides a strong representation of nonlinear relationships in particu-
lar and contributes to obtaining high model accuracy even in low 
sample scenarios. Gaussian regression is used because it is expected 
to be an effective approach in estimating emitter parameters from 
radar signal data.

2) Neural Networks:
A neural network is a nonlinear and statistical prediction method 
mimicking how the human brain processes information. It consists 
of three primary layers: the input layer, the hidden layer, and the 
output layer. The input layer is the first layer in the neural network, 
responsible for receiving raw data and passing it to the intermedi-
ate layers. The term intermediate layers used in the network model 
in this study is used in the sense of the hidden layers of the neural 
network, and both terms are used synonymously to describe the 
processing layers located between the input and output layers. Each 
neuron in the input layer represents a feature or attribute of the 
input data. This layer acts as a conduit, passing the data to the next 
set of neurons in the network. The hidden layers are where process-
ing and learning occur [33]. A classical neural network model typi-
cally comprises several hidden layers, each with multiple neurons. 
These hidden layers perform a series of complex transformations on 
the input data, learning to extract and abstract features critical for 
accurate predictions.

The number of hidden layers and neurons within each layer can vary 
depending on the problem’s complexity and the network’s architec-
ture. These layers are where the network learns to recognize patterns 
and relationships in the data through the backpropagation process. 
It involves propagating the error from the output layer back through 
the network to update the weights of the connections between 
neurons. This iterative process enables the network to minimize the 
difference between the predicted output and target values, thereby 
refining its accuracy over time. The output layer is responsible for 
producing the computational result. The neurons in this layer com-
bine the features learned in the hidden layers to make a prediction 
or classification.

Various factors can influence the neural network’s performance, 
including the network’s architecture (such as the number of lay-
ers and neurons) and the effectiveness of the training process. For 
example, the total number of hidden layers in a neural network 
depends on the complexity of the input data and the specific task 
at hand. The details of the network architecture implemented in this 
study are shown in Table II.

D. Performance Evaluation Criteria
In this study, a confusion matrix was used. The confusion matrix is a 
table used to describe the performance of a classification algorithm. 
A confusion matrix visualizes and summarizes the performance of 

the classification algorithm. Performance was compared based on 
the following metrics by proportioning the values obtained from 
the confusion matrix. The operation is performed on four numerical 
values obtained from the matrix. These are true positives (TP), true 
negatives (TN), false positives (FP), and false negatives (FN). TP: the 
observation is predicted to be positive and is positive. FP: the obser-
vation is predicted to be positive and is negative. TN: the observation 
is predicted to be negative, but it is negative. FN: the observation 
was predicted as negative and positive. Precision [(3)], recall [(4)], 
accuracy [(5)], specificity [(6)], sensitivity [(7)], and F1-score [(8)] are 
metrics obtained from the confusion matrix and used for perfor-
mance evaluation in the literature.

Precision
TP

TP FP
�

�
	 (3)

Recall
TP

TP FN
�

�
	 (4)

Accuracy
TP TN

TP TN FP FN
�

�
� � �

	 (5)

Specificity
TN

TN FP
�

�
	 (6)

Sensitivity
TP

TP FN
�

�
	 (7)

F Score x
PrecisionXRecall
Precision Recall

1 2�
�

	 (8)

To compare method performances, root mean square error (RMSE) 
(9), mean absolute error (MAE) (10), and mean absolute percent error 
(MAPE) (11) metrics are used.

RMSE
y y

n
i

n
i i

�
�� �

�
�

1

2
�

	 (9)

MAE
n

y y
i

n

i i� �
�
�1

1

� 	 (10)

MAPE
n

y y

y
i

n
i i

i
%� � �

�

�
�100

1

�

	 (11)

yi
�  represents the predicted value and yi represents the real value for 
all error calculation formulas.

TABLE II.  NEURAL NETWORK MODEL PARAMETERS

Model Parameter Value

Number of fully connected layers 1

First layer size 10

Activation function Relu

Iteration limit 1000
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IV. RESULTS AND DISCUSSION

All classification and evaluation analyses were performed using 
MATLAB version 2025b. The analysis process was conducted on 
an ASUS ZenBook 14 laptop with 16 GB RAM and an Intel Core i9 
processor. The hardware and software infrastructure used provided 
sufficient performance in data processing and model training pro-
cesses. The flowchart of the study is shown in Fig. 5.

The classification step, the first stage of this study, aims to deter-
mine the type of radars. For this reason, the problem seems to be a 
multi-class classification problem. In the model evaluation process, 
the 5-fold cross-validation method was employed to prevent over-
fitting and to more accurately measure the model’s generalizability. 
Additionally, 10% of the existing data was set aside as test data—
completely independent of the training process—to evaluate the 
model’s final performance on an independent dataset. The reliability 
and generalizability of the model were analyzed in detail through 
the performance metrics obtained in both the validation and testing 
stages. One of the most critical performance criteria for determining 
classification performance is the confusion matrix. Figs. 6–8 show 
the confusion matrices of the three methods.

As shown in Table III, the methods with the highest classification per-
formance are DTs and SVM. These confusion matrices show that they 
can separate the classes from each other on the relevant dataset.

This study analyzes radars, a vital piece of equipment in EW. It utilizes 
a dataset comprising various parameters associated with different 
types of radar. The study consists of two stages: the first is classifica-
tion, and the second is regression. In the classification phase, the aim 
is to determine the type of radar using the features in the dataset. In 
the second phase, the goal is to calculate the distance of the threat 
element to the target. The regression step results are presented in 
Table IV.

K-nearest neighbor, DT, SVM, and ensemble bagged methods 
were used in the classification phase; SVM, DT, ensemble bagged, 
NN, and GPR algorithms were evaluated in the regression process 
in the analysis performed within the scope of the study. Decision 
trees, SVM, and ensemble methods stood out with their high dis-
crimination ability by reaching a 100% accuracy rate according to 
the classification results. Decision tree’s fast decision-making struc-
ture, SVM’s discrimination power in high-dimensional data, and the 
ensemble structure’s increasing generalization ability by reducing 
variance were effective in obtaining these results. K-nearest neigh-
bor lagged behind these models, especially due to data density and 
neighborhood sensitivity. The lowest error rate was obtained with 
GPR in regression analyses; this can be explained by GPR’s ability to 
model nonlinear relationships and its ability to express uncertainties 
statistically. The three methods provided 100% accuracy in classi-
fication, making these models the primary consideration in deter-
mining the hybrid structure. Time complexity is shown in Table V. 

Fig. 5.  Flowchart of this study.
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Hybrid combinations of other methods were created, and temporal 
comparisons were made. Each classifier was combined with both 
its regression counterpart and the GPR that gave the lowest error, 
and the system response times were evaluated. It was observed that 
DT-GPR, mainly when used together, has high potential in time-sen-
sitive applications.

As a result of the analyses, the accuracy, error rates, and process-
ing times of the different ML methods used in the classification and 
regression steps were compared. In the classification stage, DT, SVM, 
and ensemble methods stood out with 100% accuracy, sensitiv-
ity, specificity, and F1 scores. These results demonstrate that these 
methods provide high reliability, particularly in defense applications 
with low error tolerance, such as RWR systems.

In the regression stage, GPR stands out with its MAE, RMSE, and 
MAPE values. Gaussian regression’s ability to model nonlinear rela-
tionships and express uncertainties statistically demonstrates its 
success in estimating the threat range.

In terms of time analysis, the DT + GPR structure, which has the low-
est total processing time in binary combinations that consider both 
classification and regression steps, provided both high accuracy and 

a low error rate in a total time of only 20.69 seconds. This situation 
shows that the combination of DT’s fast decision-making structure 
and GPR’s powerful regression capabilities is quite suitable for CEW 
systems that are expected to operate in real time.

These results demonstrate that the classification performance of 
the DT, ensemble bagged, and SVM methods is highly suitable for 
RWR applications, which do not tolerate any incorrect decisions. 
Almost always, after an RWR detects a radar threat, it sends the 
information to the CMs system via the SPEW system’s central man-
agement unit. At the end of this process, automatic, semi-auto-
matic, or manual CMs are engaged, such as jamming, chaff, and 
decoys. Incorrect detection of the emitter type would result in the 
use of unsuitable CMs, potentially leading to pilot casualties and 
aircraft losses.

The range detection of the threat radars is of utmost importance, 
especially in adjusting the noise jamming power, generating false 
targets, engaging decoys, and determining the direction of evasive 
maneuvering. For range detection purposes, the ML techniques aim 
to conduct regression processes fast and accurately. The studies 
show that the GPR model is the most suitable technique for detect-
ing the threat’s range in RWRs.

Fig. 6.  Confusion matrix of k-nearest neighbors.
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Since temporal analysis directly affects the reaction time of the sys-
tem in detecting and classifying radar threats, it is a critical evalua-
tion criterion for real time EW applications. Since radar threats can 
generally be effective at high speed and in a short time, the algo-
rithms used must provide high accuracy with low processing time, 
which is of vital importance for the success of the system. During the 
mission, since the time factor is decisive for pilot safety and mission 
success, the information provided by the RWR is processed without 
delay, and the appropriate countermeasures are quickly activated; 
this comparison is seen as an important performance criterion.

Considering all performance criteria, the DT + GPR combination 
stands out as the structure that best represents the usability of the 
proposed system in the operational field.

Despite the promising findings of this study, one of its limitations is 
that working with datasets that fully reflect all environmental vari-
ability and noise in real operational conditions could help analyze 
multiple cases for possible scenarios. To demonstrate the perfor-
mance of the proposed method in practical systems in a more com-
prehensive manner, verification with real field data and evaluation of 
the algorithms in embedded hardware environments will be benefi-
cial for the development of future studies.

V. CONCLUSION

In this study, an ML-supported method for emitter identification and 
range estimation processes for RWR systems is proposed. To test the 
validity of the proposed approach, a comprehensive and synthetic 
radar pulse dataset was created that realistically simulates opera-
tional electromagnetic environment conditions.

Machine learning algorithms were used in the EID process within 
SPEW systems, which play an important role within the scope of the 
CEW concept, and their performance was evaluated. While radar 
types were successfully detected with classification algorithms, tar-
get distance was accurately estimated with regression algorithms. 
While DT and SVM stood out with high accuracy rates in the EID mis-
sion, the GPR model exhibited strong adaptability and stability in 
range estimation.

The obtained results show that ML-based methods can significantly 
increase the design and operational efficiency of SPEW systems. In 
particular, the time-efficient operation of these approaches is criti-
cal for accelerating decision-making processes in real time applica-
tions. The timely activation of countermeasures directly affects the 
survival chances of both the pilot and the platform. It is thought that 

Fig. 7.  Confusion matrix of decision tree.
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improvements can be made in the following items within the scope 
of future studies.

Physical data support: By integrating physical environmental param-
eters such as ambient temperature, atmospheric pressure, body 
temperature, and wind speed into the dataset in real time, the sys-
tem can make more accurate and reliable decisions under variable 
conditions.

Utilizing various learning approaches and network models for analy-
sis: Specifically, the goal is to enhance performance by integrating 

deep learning techniques, such as convolutional neural networks 
(CNNs) and attention mechanisms (attention-based models), into 
EID and distance estimation processes. It is planned to apply transfer 
learning techniques so that the system can be used in different geo-
graphical regions or on different platforms, and to provide continu-
ous learning capability against new types of threats.

Real time application: The hardware applicability of the algorithms in 
Field programmable gate arrays (FPGA) or Graphics processing unit-
based embedded systems will be tested, and the level of real time 
operability will be evaluated.

Fig. 8.  Confusion matrix of support vector machines.

TABLE III.  CLASSIFICATION STEP PERFORMANCE METRICS

​ Sensitivity (%) Specificity (%) Precision (%) Recall (%) F-1 Score (%) Accuracy (%) Time

KNN 81.3 81.3 81.3 81.3 81.3 82.7 26.81

DT 100 100 100 100 100 100 8.03

Ensemble 100 100 100 100 100 100 18.49

SVM 100 100 100 100 100 100 88.51

DT, decision tree; KNN, k-nearest neighbor; SVM, support vector machine.
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Modeling of threat environments: Simulation environments will be 
developed to test the system’s durability and accuracy in scenarios 
where multiple radar sources are active simultaneously and elec-
tronic jamming elements are present.

A. Limitations
The study has some limitations. This section lists these domain-
based limitations:

1.	 Usage of synthetic data: The radar pulse data used in this study 
were generated in a synthetic environment representative 
of real-world operational conditions. It should be noted that 
this may result in the developed models’ limited real-world 
performance.

2.	 Omission of physical environmental factors in the data: 
Environmental factors such as ambient temperature, pressure, 
and wind speed were not included in the data set. The absence 
of such variables may reduce the model’s sensitivity to variable 
external conditions.

3.	 Inadequate representation of real-world noise and interference 
effects: Complex real-world situations such as electromagnetic 
interference, signal interference, and multi-threat scenarios may 
present shortcomings in fully integrating the data set.

4.	 Generalizability issue: The similar characteristics of training and 
test data may prevent the direct measurement of the developed 
system’s performance on different platforms or under varying 
geographical conditions.

B. Future Works
To address limitations and contribute to competency in future work, 
improvements can be made in the following areas:

•	 Validation: To assess the reliability of the algorithms, the system’s 
performance will be verified using real time operational data, and 
benchmark studies will be conducted accordingly.

•	 Real time implementation: The real time operability of the devel-
oped system will be assessed by conducting tests on embedded 
hardware such as FPGAs and GPUs.

•	 Integration of physical parameters: The aim is to increase the accu-
racy and reliability of the decision-making mechanism by inte-
grating environmental variables (temperature, pressure, humidity, 
etc.) into the system in real time.

•	 Integration of deep learning methods: The aim is to improve classi-
fication and distance estimation performance, particularly through 
the use of models based on CNN and attention mechanisms.

•	 Simulation of threat environments: Simulation environments in 
which multiple radar sources and electronic countermeasures are 
active will be developed to test the system’s resilience and stabil-
ity in different scenarios.
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