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ABSTRACT

The energy market today allows for bidirectional transactions between utilities and consumers, even within 
traditional practices. Factors like generator failures, maintenance of transmission lines, and high network demand 
can cause overheating and failures in transmission lines and equipment, resulting in contingencies within the 
transmission network. Methods like load shedding, rescheduling of generators, and insertion of renewable 
energy-based distributed generators (DGs) are various alternatives for alleviating congestion in the network lines, 
i.e., the transmission lines or other network elements operate at or beyond their designed capacity, restricting the 
flow of electricity. In this work, the insertion of renewable energy DGs at their optimal location is proposed as a 
novel approach for alleviating the congestion in the network lines. Firstly, the real power transmission capability 
distribution factors are evaluated to determine the optimal location for integrating the renewable energy 
DGs concerning the congested line. Furthermore, these types of DGs, which are solar, wind, and biomass, are 
considered along with the modeling of uncertainties in the solar and wind. The Beta and the Weibull probability 
distribution functions are employed to explore the uncertainty in solar and wind DGs, respectively. Furthermore, 
the optimal capacity of Biomass DG has been obtained by minimizing real power losses and the voltage stability 
margin chosen for alleviating the congestion in the network lines. The newly evolved algorithm, Grey Wolf 
Optimization, has been employed to solve the multi-objective optimization problem of interest. The performance 
of Grey Wolf - Multi-Objective Optimization is verified on a standard IEEE-30 (Institute of Electrical and Electronics 
Engineers) bus system to demonstrate the effectiveness of the proposed approach. Results show that the size of 
biomass DG and real power losses are obtained as 9.9533 MW and 9.3055 MW, respectively.
Index Terms—Biomass distributed generations, probability distribution function, renewable sources

I. INTRODUCTION

The existing state of conventional power production cannot meet the emerging electricity 
requirements on an international scale. Due to inadequate system design, 16% of people on the 
planet still live without access to electricity [1]. In transmission, network congestion manage-
ment (CM) is a very crucial problem. Power transmission lines can become congested due to 
various factors such as generator outages, transmission line failures, and transformer mainte-
nance. As a result, while customers can still access power, the transmission lines may exceed 
their operational limits, potentially violating power flow constraints. This situation is called power 
transmission congestion [2]. In the transmission network, congestion reduces the power transfer 
capacities of lines, drives up prices, and prevents the most efficient supply from getting to dis-
tributors because it overloads the system to its upper limit capability.

Multiple CM strategies are put forward and utilized by energy consultants in the power sector as 
well as researchers in the literature. To start, heuristic algorithms are used to mitigate congestion. 
Secure transactions for the hybrid market model take into account the effect of flexible alter-
nating current transmission system technology on the oversight of transmission network over-
crowding, along with the most appropriate scheduling of generators while considering the effect 
of liability limitations. Distribution scheme operators (DSOs) must evaluate and optimize their 

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

•	 Power transmission congestion is a critical 
challenge in power systems, especially 
with growing demand and decentralized 
generation.

•	 Distributed generators (DGs), including 
renewable sources, can help mitigate 
congestion by supplying power locally.

•	 Most studies focus on solar or wind DGs, 
and often assume standard test systems 
without incorporating real-world data or 
practical constraints.

WHAT DOES THIS STUDY ADD ON 
THIS TOPIC?

•	 This study proposes an improved 
optimization framework using a Grey wolf 
Optimization algorithm for determining 
the optimal size and location of 
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asset investment costs to minimize investments by adopting smart grid functions. The maximum 
penetration of plug-in electric vehicles in the distribution system to minimize overall costs and 
the charging coordination of grid-to-vehicle and vehicle-to-grid (G2V-V2G) modes is designed 
[3].

When distributed energy resources (DERs) are heavily included in a distribution network, the 
DSO can utilize the dynamic tariff method to mitigate potential congestion. Integrating com-
bined heat and power systems into microgrids is crucial for improving overall energy efficiency. 
Optimizing the dispatch of these systems can significantly reduce greenhouse gas emissions 
while ensuring economic viability by using the Harris Hawks Optimization algorithm, as high-
lighted in [4]. The day-ahead scheduling of distributed generation owners, air conditioning loads, 
demand response aggregators, and DERs into the day-ahead wholesale market in a system run 
by a DSO is covered in [5]. For the first time, integrated transmission expenditure allotment meth-
ods like Postage Stamp and Contract Path are used. Furthermore, flow mile technologies are 
used, including MVA-MILE and MW-MILE. The development of flow cost techniques like MVA-
COST, MW-COST, and MW-COST is the last step [6].

For the power system comprising thermal and wind energy generating units, a proposed meta-
heuristic-based optimization strategy for tackling the combined economic emission dispatch 
problem has been developed as mentioned in [7] however, the study may not fully account for 
wind energy variability, potentially affecting solution reliability. Additionally, the optimization 
model might be limited to specific geographical or operational conditions, reducing its general-
izability to other power systems. The main objective of the optimal setup procedure is to mini-
mize daily power losses. As of now, DG capabilities have been calculated using either financial or 
technical parameters, each of which indicates that the system’s financial burden or technical exe-
cution is compromised, but the model may not consider the economic implications of large-scale 
deployment of solar and wind technologies, such as initial investment costs and maintenance in 
[8]. Similarly, several studies that attempted to connect green energy DGs to the present system 
neglected to deal with the probabilistic nature and necessary capabilities. The performance of 
Grey Wolf Optimization (GWO) may vary significantly depending on the specific problem domain 
and parameter settings, which could affect its robustness in [9]. To reduce the cost of rescheduling 
and the overall change in power after rescheduling, two proposed variants of Monarch Butterfly 
Optimization (MBO) are utilized to reschedule the generators: chaos-embedded MBO (CHMBO) 
and Improved MBO with a linear weighting factor (IMBO-LW) in [10] but the effectiveness of this 
algorithm may be influenced by the specific characteristics of the power system being analyzed. 
Likewise, a distributed energy storage system combines battery-powered energy storage with 
solar-powered distributed generation, but the study may not fully explore the impact of varying 
energy storage technologies on the overall effectiveness of CM strategies in [11]. The study then 
introduces the interval calculation approach to account for the intermittent nature of solar dis-
tributed generation and make it available during periods of peak load, thus improving the net-
work’s overall efficiency. Within [12], a novel topology control technique is developed to improve 
security margins in a power network by lowering overloads and congestion; however, the study 
might not address the potential impacts of such dynamic reconfigurations on system stability 
and reliability. Similarly, various transmission congestion issues and events in the energy industry 
are addressed by concentrating on the problems and effects of electrical power congestion have 
been addressed in [13] but the analysis may not account for regional variations in congestion 
issues, limiting its applicability to specific geographical contexts. The transmission congestion 
problem has been addressed using the Improved Manta-Ray Foraging Optimization intended to 
minimize the congestion cost, but it does not extensively evaluate the computational efficiency 
of the proposed method in large-scale networks in [14].

In addition to the above, the importance of integrating market mechanisms with Transmission 
System Operators and DSOs to enhance CM in power systems has been deliberated in [15], but 
the analysis may not fully address the potential economic impacts on consumers and market par-
ticipants resulting from the proposed coordination strategies. As a result, the study may overlook 
the variability of renewable energy sources and their influence on market dynamics, potentially 
impacting the effectiveness of the proposed coordination framework. Further, a flexibility plat-
form developed for DSOs that utilizes an optimal CM model is proposed in ref. [16] However, the 
model’s applicability may be limited to European contexts, potentially reducing its relevance 
in other regions with different regulatory and market structures. The platform aims to enhance 
the operational efficiency of power systems by integrating flexible resources and improving 

biomass-based DGs to relieve real power 
congestion.

•	 It incorporates real- time data of solar and 
wind, bridging the gap between theoretical 
models and practical application.

•	 The study demonstrates that biomass 
DGs, when optimally placed, significantly 
reduce power losses and congestion.
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CM strategies within the European CoordiNet project framework. 
The model’s applicability may be limited to specific geographical 
regions or regulatory environments, potentially reducing its gener-
alizability to other contexts. A substation reconfiguration selection 
algorithm that employs Power Transfer Distribution Factors (PTDFs) 
and a reinforcement learning approach to manage congestion effec-
tively is proposed in ref. [17] as the reliance on PTDFs may limit the 
algorithm’s performance in highly dynamic systems where real-time 
data is critical for accurate CM. Further, a sensitivity-based genera-
tion rescheduling approach is proposed to alleviate congestion in 
network lines in [18], with the aim of minimizing congestion costs 
while ensuring system reliability. The optimization algorithm’s per-
formance may be sensitive to initial conditions and may not guar-
antee convergence to the global optimum, potentially affecting the 
effectiveness of CM.

The firefly algorithms have been utilized to determine the optimal 
capacity of DG for effective transmission CM [19]. However, the 
study may not fully explore the economic implications of integrat-
ing DG into existing power systems, particularly regarding invest-
ment costs and regulatory hurdles. Factors such as infrastructure 
limitations, regulatory barriers, and market dynamics contribute to 
electrical power congestion in the sector. This highlights the need 
for enhanced transmission infrastructure and supportive policies to 
effectively address and mitigate congestion issues [20]. The study 
may not account for the impact of emerging technologies such as 
energy storage systems and smart grid solutions on CM. Additionally, 
it may lack empirical data from diverse geographical regions, limit-
ing the generalizability of the findings.

A hybrid swarm optimization approach is presented to determine 
the optimal capacity of DG sources to manage transmission conges-
tion effectively [21]. The study primarily focuses on simulation results, 
which may not fully capture real-world complexities and uncertain-
ties in power system operations. Furthermore, the scalability of the 
hybrid optimization method in larger systems remains untested. A 
modified whale optimization algorithm is used to optimize the place-
ment and operation of wind farms, demonstrating that wind energy 
can alleviate congestion and improve overall system efficiency 
[22]. The study may not consider the variability and intermittency 
of wind energy, which could affect the reliability of CM strategies. 
Additionally, the model’s assumptions regarding wind resource avail-
ability may limit its applicability in regions with different wind pro-
files. A framework is proposed using multi-objective demand-side 
management strategies that incorporate consumer behavior and 
renewable energy sources, demonstrating significant improvements 
in cost savings and emissions reduction [23]. The study may not fully 
address the complexities of consumer behavior and its impact on 
demand-side management strategies. Furthermore, the proposed 
framework’s effectiveness in larger, more diverse microgrid settings 
remains to be validated. Various methodologies for optimal plan-
ning, including mathematical modeling, heuristic approaches, and 
simulation techniques, are proposed [24]. Factors influencing the 
deployment of DG and Energy Storage Systems, including economic 
viability, regulatory frameworks, and technological advancements, 
are also discussed. The review identifies gaps in current research, par-
ticularly in the integration of renewable energy sources with existing 
power infrastructure. Different optimization techniques, including 
genetic algorithms, particle swarm optimization, and mixed-integer 
linear programming, have been addressed for the present problem 
of interest [25]. The review emphasizes the role of DG in improving 

voltage profiles, reducing losses, and enhancing the overall reliabil-
ity of power systems. Environmental impacts and regulatory consid-
erations are also addressed, highlighting the need for sustainable 
practices in DG deployment.

In order to expand the performance of the network under delibera-
tion using multi-objective optimization (MOO), an effort was made 
to obtain DG sizes, which is a significant addition to the existing CM 
problem. Similar to how renewable energy DGs like solar and wind 
have an intermittent nature, PDF modeling has been used to simu-
late these DGs’ integration with the current system [6]. Furthermore, 
a MOO framework is used to evaluate and solve the controlled out-
put of the biomass DG with the help of GW-MOO. Transmission line 
congestion decreases as GWO distributes the load more effectively 
by optimizing the power flow. Grey Wolf Optimization improves the 
power grid’s stability and dependability by controlling congestion. 
Real-time CM relies on timely solutions, which are ensured by the 
algorithm’s quick convergence speed. Biomass DG uses renewable 
resources, reducing reliance on fossil fuels and supporting decar-
bonization. Biomass DG is dispatchable, aiding in peak demand 
management and grid stability. Localized power generation reduces 
transmission congestion and losses, making biomass-based DG a 
suitable choice for this work.

A comprehensive review of recent literature indicates that the chal-
lenges faced by the grid include the rising integration of variable 
renewable energy sources, such as solar and wind, which results 
in generation fluctuations and congestion during peak produc-
tion periods. Limited energy storage capacity restricts the ability to 
smooth out fluctuations and relieve congestion. Congestion often 
requires complex operational adjustments that may not be feasible 
in real time. Therefore, developing advanced optimization algo-
rithms, such as those based on artificial intelligence, can improve 
operational efficiency and decision-making under constraints to 
reduce congestion. While there is existing research on biomass 
energy systems and variable renewable energy sources like solar 
and wind, there is limited literature on specific integration strate-
gies that optimize the operation of biomass DG in conjunction with 
these variable sources. Investigating how biomass can complement 
solar and wind energy during periods of low generation could pro-
vide valuable insights. There is a need for more research on inno-
vative technologies and control mechanisms that can enhance the 
reliability and efficiency of biomass DG when paired with solar and 
wind energy. Most of the researchers considered multi-objective 
problems, but single-objective problems are not considered, which 
is also important. Considering the above, the major contributions of 
the present work are as follows:

1.	 In this work, the transmission CM problem has been addressed 
by incorporating optimal capacity biomass DG at a suitable 
location.

2.	 Secondly, the capacity of biomass DG is assessed considering 
the stochastic behavior of solar and wind DGs, modeled using 
real-world data and represented by Weibull and Beta PDFs—an 
approach that integrates practical uncertainty into the planning 
process.

3.	 Further, the positioning of the DGs is evaluated based on real-
time distribution factors, which are derived from a Jacobian 
matrix of Newton–Raphson load flow.

4.	 Finally, a novel and efficient GWO has been proposed to deter-
mine the optimal capacities of Biomass DG for relieving net-
work congestion. Unlike the conventional GWO, the proposed 
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method integrates probabilistic models of solar and wind DGs 
using Beta and Weibull distributions, incorporates a custom-
ized objective function focused on minimizing congestion and 
losses, and employs adaptive control parameters to improve 
convergence speed and accuracy. Additionally, an enhanced 
constraint-handling mechanism ensures compliance with 
power system operational limits, making the approach both 
practical and robust.

5.	 This methodology is validated using a standard IEEE-30 bus sys-
tem, demonstrating its effectiveness in minimizing power flows 
in congested lines and improving voltage profiles while reduc-
ing potential power losses. The main advantage of this work 
is that optimization is always reached without violation of the 
objectives and constraints.

Several studies have focused on the optimal placement and sizing 
of DG in power distribution systems to enhance performance and 
efficiency. For instance, Kumar et al. [25] provided a comprehensive 
review of techniques for optimal DG allocation, highlighting vari-
ous methodologies used across different scenarios. Gampa and Das 
[26] addressed DG allocation considering average hourly load varia-
tions, which is essential for modeling real-world demand patterns. 
Similarly, Ing et  al. [27] investigated operational modes of DG and 
their impact on network safety margins and reliability.

While these studies contribute valuable insights into DG optimiza-
tion, they often lack a detailed consideration of the probabilistic 
behavior of renewable energy sources. In contrast, this study models 
solar and wind DGs using Beta and Weibull probability distribution 
functions, respectively, thereby reflecting the stochastic nature of 
renewable energy sources more accurately. Furthermore, the capac-
ity of biomass DG is evaluated under this probabilistic environment, 
which is relatively underexplored in previous research.

In terms of optimization techniques, the GWO has been widely 
adopted in multi-objective frameworks, as demonstrated by Mirjalili 
et al. [28], who proposed a GW-MOO for solving complex optimiza-
tion tasks. Similarly, Peesapati et al. [29] addressed CM through MOO 
using the Flower Pollination Algorithm. Building on these founda-
tions, this study utilizes both single-objective and MOO approaches: 
single-objective for optimal sizing of biomass DG, and multi-objec-
tive formulations for comparing trade-offs among system perfor-
mance metrics such as power loss, voltage profile, and congestion. 
This dual-framework approach offers a more comprehensive and 
practical decision-making strategy for planning distributed genera-
tion in modern power systems.

These distinctions establish the novelty and contributions of this 
work by integrating probabilistic renewable models with biomass 
DG optimization, using both single and multi-objective GWO-based 
approaches.

The remaining sections of the manuscript are organized as follows: 
Section 2 formulates the congestion problem, while Section 3 pre-
sents the optimal distribution of DGs. A probabilistic model repre-
senting DGs for renewable energy analysis is outlined in Section 
4. Section 5 details the Grey Wolf MOO used to address the multi-
objective function. The findings from the case study are discussed in 
Section 6, and Section 7 provides the conclusion.

II. CONGESTION PROBLEM

In a deregulated economy, bilateral and multilateral dealings are 
more important [2]. The following is a representation of the bilateral 
transaction (1):

P Pg
i

d
j� � 0 	 (1)

Where bus i hosts the power generation Pi
g, while bus j corresponds 

to the contracted power demand Pj
d. By maximizing social welfare 

within practical bounds, the marketplace is cleared in double-sided 
bidding. Next, the independent system operator evaluates the 
safety of the electricity system. In the event of system instability, 
CM is implemented, and several generators may be instructed to 
alter their output. As a consequence, in a situation of overcrowding, 
the generators could earn more or suffer a greater loss. To mitigate 
congestion, it is recommended to install optimally sized biomass 
distributed generation (BMDG) units at strategic load pockets. The 
unpredictability of solar and wind needs to be taken into account 
while calculating the optimal sizes of the BMDG because distributed 
generation from solar and wind is entirely dependent on geography. 
This multi-objective problem is used to find out the optimal sizes, 
with the primary objectives of loss margin (LM) and voltage stability 
margin (VSM).

A. Fuel Cost of Generators
Thermal generators, as conventional sources, are already part of the 
existing grid to ensure reliable load satisfaction. Their inclusion pro-
vides a realistic representation of current network conditions. While 
biomass, solar, and wind are used to mitigate transmission conges-
tion, their variable nature requires the stable support of thermal 
generators to maintain grid reliability. Including them allows for a 
comprehensive assessment of how renewables interact with exist-
ing infrastructure to reduce congestion without compromising sys-
tem stability.

The fuel cost of the thermal generators is expressed in terms of the 
sum of the individual quadratic cost functions of each generator. It is 
expressed as below by equation (2) [6]:

F a P b P ci

i

N

i i i i i

g

� � �
�
�

1

21
2

	 (2)

where Fi is the fuel cost of generators, Pi is the real power generation 
ith generator, and ai, bi, ci are the cost coefficients of ith generator.

B. Loss Margin
This objective focuses on minimizing power losses in the distribution 
system, which can enhance the overall efficiency of the system [6]. A 
higher LM indicates that the system can handle more load without 
significant losses given in equation (3).

MinimizeLM
Ploss
Ploss

dg

= 0
	 (3)

Where Plossdg is the real power losses after inserting the DG, and 
Ploss0 is the real power losses before inserting the DG.
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C. Voltage Stability Margin
This objective aims to modify the voltage stability of the system, 
ensuring that voltage levels stay within standard limits under vari-
able load situations [6]. A higher VSM indicates a more robust system 
capable of maintaining voltage stability shows in (4).

minVSM
V

V

i

N

i
DG

i

N

i

�
�

�

�
�

( . )

( . )

1 0

1 0

2

0 2
	 (4)

VDG
i is the voltage at the ith node after connecting the DG, V0

i is the 
voltage at the ith node before connecting the DG, and N is the num-
ber of buses.

D. Constraints
a)	 Equality Constraints (5,6)

P P V GP cos B sin VgP dP
N

nbus
� � �� �� �

��P PN PN PN PN N
 1

� � 	 (5)

Q Q V B cos G sin VgP dP i
j

nbus

PN� � � � �� �
�� 1

PN PN · PN N� 	 (6)

a)	 Inequality Constraints (7-12)

P P PgP
min

gP gP
max£ £ 	 (7)

Q Q QgP
min

gP gP
max£ £ 	 (8)

V V Vmin max
P P P£ £ 	 (9)

δ δ δP P P
min max≤ ≤ 	 (10)

S Sl l
max£ 	 (11)

a)	 DG Constraints

0£ £P DGDG k
maxP,

	 (12)

Where PgP
min is the minimum active power generation of each 

generator, PgP
max is the maximum active power generation of each 

generator Qgp
min  is the minimum reactive power generation of each 

generator, Qgp
max  is the Maximum reactive power generation of each 

generator, Vmin is the minimum voltage limits of buses, Vmax is the 
maximum voltage limits of buses, δi is the voltage angles of ith bus, 
δi

max  is the maximal limitation of voltage angles of ith bus, δi
min is the 

minimal limitation of voltage angles of ith bus, Sl
max  is the maximum 

permissible MVA line flow in line. P max
DG

 is the maximum power gen-
eration of DG.

The multi-objective function, which has several goals, is depicted as 
follows (13):

MinimizeF W LM W VSM� �1 2* * 	 (13)

Equations (3) and (4) show single-objective functions, whereas (13) 
shows a multi-objective function. The constraints in the aforemen-
tioned equations as well as the following constraints are applied to 
the aforementioned fitness function. Weight factors W1 and W2 are 
considered 0.5, respectively, as equal priority is given to a single 
objective while considering a multi-objective problem, whereas 1 

and 0 will be considered while solving a single objective equation 
and vice versa (14).

n

T

nW
�
� �

1

1 	 (14)

Where Wn is the nth Weight factor, T is the total number of objectives.

Further, after the incorporation of PV, wind, and biomass DGs at a 
suitable location, the modified power flow equation is shown as 
below (15):

P P P V GP cos B sin VgP DG k dP
N

nbus
� � � �� �� �

��, P PN PN PN PN N


1

� � 	 (15)

III. ALLOCATION OF DISTRIBUTED GENERATORS AT THE 
OPTIMAL LEVEL

A ZBUS-based contribution component-supported method is sug-
gested for the insertion of the DG to reduce congestion. Similarly, 
the ideal position for DGs is determined using the RPTCDFs sug-
gested in [26]. It is the ratio of the change in power insertion (Pn) 
at a specific bus n to the alteration in real power flow (Pij) along a 
transmission line connecting buses P and N. The power flow and 
transfer capacities of various nodes in the transmission network 
are depicted clearly by RPTCDFs. It is easy to identify nodes where 
adding distributed generation will significantly reduce congestion 
or enhance transfer capacity by examining these parameters. They 
provide sensitivity analysis, which examines the effects of minute 
adjustments to power injection or withdrawal at different nodes on 
the system as a whole. This can identify the precise places where DG 
will be most helpful [6]. The RPTCDFs for line k are shown mathemati-
cally as follows (16).

RPTCDF
P
P

n
K

n
= PN 	 (16)

It is possible to express the actual power flow in a line-k connected 
to buses-i and-j as follows (17): 

P V V Y cos V Y cosPN � � �� ��P N PN PN N P P PN PN� � 2
	 (17)

The magnitude and angle of the ijth element in the Ybus matrix are 
YῬṄ and ῬṄ. Using Taylor series approximation, the following equa-
tion (18) can be used to represent this one (ignoring second and 
higher order terms) [6]:

P
P P P

V
V

P
V

Vi j
P

iPN
PN

P

PN

N

PN PN

N
N= + + +

δ
δ
δ
δ

’

	 (18)

Equation (15) can be written as (19):

P b c V d VPPN PN PN N PN P PN N� � � �� �� 	 (19)

The partial derivatives of the real power flow with respect to the vari-
ables δ and V can be utilized to create the coefficients appearing in 
(19) as (20-23):

� � �PN P N PN PN P� � �� �V V Y sin N 	 (20)
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b V V Y sinPN P N PN PN N P� � � �� �� � 	 (21)

c V Y cos V Y cosPN N PN PN N P P PN PN� � �� ��� � 2 	 (22)

d V Y cos NPN P PN PN P� � �� �� � 	 (23)

RPTCDFs have been ascertained by using the subsequent Jacobian 
relationship (24)

P J J V� �11 12� 	 (24)

When P-V coupling is disregarded, (24) can be expressed as (25):

P J� 11� 	 (25)

From (23), we get (26),

���� �� �� ����� ���� ��
�

J P M P11
1 	 (26)

So, using the following equation (27-28),

�P Pl�
�
�

l

n

lm P
1

	 (27)

P P� �1 2, , ,n s 	 (28)

where Vl is the lth bus voltage magnitude, δl is the lth bus voltage 
angle, Ypn is the admittance magnitude of the element p-n in Ybus, 
and θpn is the admittance angle of the element p-n in Ybus [6].

The effect of changing the bus voltage on the potential power rate is 
thought to be nominal. Since real power must be taken into account 
while calculating DGs due to the relationship between reactive 
power and voltage in a power system, Equation (28) can be rewritten 
as (29):

P bPN PN P PN N� �� � � 	 (29)

Substituting (26) into (28), we get (30):

P m P b m P
l

n

l l

l

n

l lPN PN P PN N� �
� �
� ��

1 1

	 (30)

Equation (28) is represented as (31):

P m b m P m b m P

m b mn Nn

PN PN P PN N PN N PN N

PN P PN

� �� � � �� �

����� ��

� �

�

1 1 1 2 2 2

��Pn 	 (31)

Equation (28) can be represented as (32-33):

P RPTCDF P RPTCDF P R PTCDF PK K
n
k

nPN � � �2 1 2 2 	 (32)

RPTCDF m b mK
PN P PN N2 1 1� ��’ ’ ’   	 (33)

RPTCDF is a real distribution multivariate for transmission overcrowd-
ing that is equal to bus n and line k that links bus P and bus N [6]. The 
Jacobian utilized in this study to calculate the RPTCDFs will change 
when the system’s operational conditions vary [30]. However, the 

suggested method can be used to update the RPTCDFs and is fairly 
quick. The values that were obtained are then organized in descend-
ing sequence to identify the buses to be implemented in order, 
depending on the DGs.

IV. PROBABILISTIC MODEL FOR THE PRODUCTION OF 
RENEWABLE ENERGY

The location has a huge impact on how much energy is produced 
by the sun and wind. As a result, these renewable energy sources’ 
outputs are variable. In contrast, the output of biomass generation is 
continuous and will only be adjusted as necessary. In this work, solar 
and wind-based energy DGs are considered non-dispatchable DG, 
whereas biomass is considered dispatchable DG, i.e., dispatchable 
DG. It is necessary to analyze the characteristics of solar irradiation 
and wind velocity for the best performance of solar panels and wind 
turbines. Therefore, it is necessary to choose a PDF that produces 
correct results. For modeling renewable sources, the Beta Probability 
Distribution Factor (BPDF) and Weibull Probability Distribution 
Factor (WPDF) are frequently utilized [27].

A. Model for Solar Power Generation
According to BPDF [27], solar irradiation is assumed to be proba-
bilistic, as solar radiation is a broad term referring to the overall 
energy output from the Sun, while irradiance specifically refers 
to the power of solar radiation hitting a particular surface at any 
given time. For a given time period ‘t’, the following formula (34) 
can be used to calculate the solar panel’s average hourly output 
power [6, 30]:

P Pg P sPV
t

T

PVS s g
t

s

� � �
�
�

S

*
1



	 (34)

Where Pt
pv is the solar output, Pgpvs is the amount of solar radiation 

[6].

The ambient temperature and radiance of the place affect the PV 
array’s output power. PV array power generation is represented by 
the following equation (35) as a mathematical relation of the amount 
of solar radiation at the ground level [6,13].

Pg * * *PVS P S Ssav N FF V Ivmod� � � 	 (35)

For a specific radiation level and ambient temperature TA (°C), the 
following relationships (36-39) can be used to determine the varia-
tions in a PV module’s current and voltage [13].

	 (36)

V V K Toc V cSS *� � � ��� �� 	 (37)

	 (38)

FF
V I

V I
MPP MPP

OC SC
=

*
*

	 (39)

The probability of solar irradiance P SS
t

g� � for each state during any 
given time period is calculated as (40) [26]:
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S
’

	 (40)

Where Npvmod is the total PV modules, FF is the fill factor, Vs and Is are 
the voltage and current at solar irradiance, gt

s is the solar irradiance 
at s state and tth time, KI is the current coefficient (A/ ֯C), Kv is the voltage 
coefficient (A/ ֯C), NoT is the cell nominal operating temperature (֯C), 
Tcs is the cell temperature (֯C), Voc is the no load voltage (V), Isc is the 
full load current (A), VMPP is the voltage corresponding to maximum 
power point, IMPP is the current corresponding to maximum power 
point, and  is the mean value of solar irradiance [6].

B. Model for Generating Wind Electricity
With respect to the tth time segment, the power production from WT 
per hour is represented as [6], and according to WPDF (41) [27]:

P PG *P
S

S
t T

WTS v
tWT vv� � �

�� 1

, 	 (41)

For any state at any given time period, the likelihood probability of 
wind speed Pv (vt

g) is computed as (42): 

P s

S S

S S
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v
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v v

v
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v v

v v
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t t

t t
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	 (42)

At a speed for state “S,” the power output from WT is (43):

PG

or

a b orWTg

aS cin aS cout

aS rated cin aS N

N

� �� � � �

�

0

0

3

� � � �

� � � �

�

* *P

�� �aS count�

�

�
��

�
�
�

	 (43)

Constants b and a are functions of the nominal wind speed ( νN ) 
and cut-in wind speed ( νcin

), respectively, and are obtained as (45-
45) [8]:

a rated

N cin

�
�� �

P
� �3 3

	 (44)

b cin

N cin

�
�� �
�

� �

3

3 3
	 (45)

Where Vcout is the cut-out speed, Vcin is the cut-in speed, Prated is the 
maximum output of wind, and VN is the wind speed at nominal condi-
tions [6]

V. GREY WOLF MULTI-OBJECTIVE OPTIMIZATION

In this study, the GW-MOO method is employed to minimize a sin-
gle objective function to determine the optimal DG capacity. Grey 
Wolf Optimization was initially innovated by Mirjalili in 2014 [9]. This 
is founded on the way that grey wolves find food. Typically, grey 
wolves wander in large groups of five to twelve animals. The wolves 
are actively hunting as they circle the victim. The mathematical 
modeling of the encirclement behavior is presented below (46-47) 
[13].

	 (46)

	 (47)

Here, C r
ur uru
= 2 3*  and 

r r uru r
A * *� �2 4r r r

Where  and  are the location vectors of the prey and 
the wolf, respectively, during the kth iteration in which the coeffi-
cient vectors are 


A  


C  . The 


r  represents the linear fluctuation in 

the range [0, 2] with regard to every repetition count, and r3 and r4 
represent the random vectors selected between [0, 1].

Wolves lead the hunting process due to their experience in decision-
making. The top three solutions understand potential options better, 
allowing us to prioritize them while adjusting the remaining repre-
sentatives to align with the top search representative’s position. 
Grey Wolf Optimization is designed for single-objective optimiza-
tion, relying on a strict hierarchy (alpha, beta, delta wolves). Grey 
Wolf - Multi Objective Optimization extends GWO for multi-objective 
problems by integrating Pareto dominance, an external archive, and 
adaptive leader selection to generate a set of optimal trade-off solu-
tions. Steps to implement GW-MOO [28] for biomass DG capacity 
optimization with consideration of solar and wind output variability.

Step 1. Data Collection

Gather Data: Gather historical solar radiation, wind speed, and 
energy generation data from existing farms, along with grid demand 
data and peak times. Normalize the data for analysis.

Step 2. Statistical Analysis of Renewable Energy Sources

Calculate seasonal averages, standard deviation, and other statistics 
for solar and wind output, and analyze their correlation to assess 
their complementary relationship.

Step 3: Define the Optimization Problem With Necessary 
Constraints

Formulate an objective function that minimizes congestion by 
(1)-(12).

Step 4. Initialization of the Grey Wolf Optimization Algorithm
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Population and Parameters: Establish a population of Grey wolves 
 (solutions) at the outset, each of which stands for a possi-

ble arrangement of biomass DG capacities at various transmission 
network nodes. Establish the positions of wolves randomly in the 
solution space, where each position represents a potential solution 

 (placement of biomass DG), the number of iterations, and 
any other pertinent variables, such as the coefficients α, β, and δ, 
which are nothing but the best solution, second-best solution, and 
third-best solution of the capacity of biomass DG, respectively.

Step 5. Fitness Function

Objective: Create a fitness function to evaluate solutions aimed at 
reducing transmission network congestion, considering voltage sta-
bility and power loss. Adjust biomass capacity based on solar and 
wind forecasts to optimize the objective function.

Constraints: Include restrictions such as power balancing and the 
voltage limitations found in (4) to (10).

Step 6. Social Hierarchy: Results Obtained After Each Iteration 
Will Be Considered in Priority As Per Below

Alpha (α) will be the best solution. Then, beta (β) will be the second-
best solution. The third-best solution will be delta (δ), and Omega, 
the remaining wolves, will be the other solutions, i.e., the capacity of 
biomass DGs about solar and wind output variability.

Step 7. Encircling Prey

Update the positions of wolves based on the positions of α, β, and δ 
using the encircling behavior equations (48-50):

	 (48)

	 (49)

	 (50)

Where is the position vector of 

prey, A and C are coefficient vectors (51-53), and

	 (51)

	 (52)

	 (53)

Step 8. Hunting

Update the positions of the wolves according to the hunting behav-
ior, considering the influence of the three best solutions (α, β, and δ) :

	 (54)

Where , and  are updated 
positions toward α, β, and δ, respectively.

Step 9. Convergence

Examine convergence using a stopping criterion, such as the fit-
ness function’s threshold improvement or the maximum number 

of iterations. In GWO, no archive, just a simple linear update of the 
exploration factor. GW-MOO maintains solution diversity and pre-
vents premature convergence.

Step 10. Result

The ideal arrangement of biomass DG capacity in the transmission 
network is represented by the best solution (α), i.e., after the itera-
tions regarding solar and wind output variability.

Implementation of the GW-MOO flowchart is shown in Fig. 1. Grey 
Wolf - Multi Objective Optimization is an easy-to-implement opti-
mization method with fewer tuning parameters, making it suitable 
for real-world applications like DG sizing. It mimics the hunting 
behavior of Grey wolves, balancing exploration and exploitation to 
find optimal solutions. The algorithm adjusts its exploration (when 
the coefficient vector A is outside −1 to 1) and exploitation (when 
A is between −1 and 1) phases, leading to quick convergence and 

Fig. 1.  Flowchart of Grey Wolf - multi objective optimization.
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reduced computation time. Grey Wolf - Multi Objective Optimization 
is versatile, capable of handling complex, nonlinear, or multi-modal 
objective functions, and is resilient against local optima in DG scal-
ing problems [29]. Below, pseudo-code for GWO-MOO is given [28]:

Initialize the grey wolf population Xi (i = 1, 2, ….n)

Initialize α, A, and C

Calculate the objective values for each search agent

Find the non-dominated solutions and initialize the archive with them

Xα=SelectLeader (archive)

Exclude alpha from the archive temporarily to avoid selecting the same 
leader

Xβ= SelectLeader (archive)

Temporarily exclude beta from the archive to avoid selecting the same 
leader

Xδ= SelectLeader (archive)

Add back alpha and beta to the archive

t=1;

while (t < Max number of iterations)

for each search agent

Update the position of the current search agent by equations (48)-(54)

end for

Update α, A, and C

Calculate the objective values of all search agents

Find the non-dominated solutions

Update the archive with respect to the obtained non-dominated 
solutions

If the archive is full

Run the grid mechanism to omit one of the current archive members

Add the new solution to the archive

end if

If any of the new added solutions to the archive is located outside the 
hypercube

Update the grids to cover the new solution(s)

end if

Xα=SelectLeader (archive)

Exclude alpha from the archive temporarily to avoid selecting the same 
leader

Xβ= SelectLeader (archive)

Exclude beta from the archive temporarily to avoid selecting the same 
leader

Xδ= SelectLeader (archive)

Add back alpha and beta to the archive

t=t+1

end while

return archive

In the proposed system, control variables are real power generations 
of generators and capacities of DGs. Population size is considered 
20, and the maximum iterations are 200. The first population of the 
above variables is generated randomly between lower and upper 
bounds. 

VI. FINDINGS

To reduce network congestion, the integration of BMDGs has been 
proposed as a novel alternative, considering the intermittent nature 
of solar and wind DGs to alleviate congestion in the transmission 
system’s network lines. The test system is based on the IEEE 30 bus 
system [8, 31]. 

A. Resource Assessment
The Kakdwip region (21.883 N, 88.183 E) experiences unusual sea-
sonal weather variations due to its proximity to the Bay of Bengal 
and the Tropic of Cancer. The four seasons examined during a year 
are spring (February to April), winter (November to January), autumn 
(August to October), and summer (May to July). There are 96 times 
in a year, divided into 24 segments every season, each of which 
corresponds to a specific hourly portion of the season [27, 30]. The 
capacity of biomass-distributed generation is constrained within the 
range of 0 to 60 MW, representing its operational limits. Solar and 
wind generation are computed based on practical atmospheric data, 
with no artificial bounding, as their output is governed by measured 
solar irradiance and wind speed inputs modeled using Beta and 
Weibull PDFs, respectively.

Fig. 2 depicts the end product of solar and wind DGs, which was cal-
culated using historical information gathered at the place to deter-
mine the mean and standard deviation of solar radiance and wind 
motion by Tables I and II [8], and Tables III and IV show the specifica-
tions of the PV module and wind turbine. Then, a BPDF as well as a 
WPDF is produced every hour.

B. Creation of Contingencies
In this work, the potency of the suggested MOO-based CM approach 
is examined by testing it on a standard IEEE 30-bus system [8, 31]. 
To determine the active powers of the generators, power flows in 
the lines, and the whole loss in the system, basic OPF is carried out 
with the aim of minimizing the fuel cost function (2) subject to the 
constraints (5) to (11). The active power outputs of the different gen-
erators, excluding the bus 1 generator, are assumed as the variables 
for the basic OPF run, in which bus 1 is considered as the reference 
bus. Table V displays the results of the OPF. The results of GWO have 
been compared with PSO and FPA algorithms proposed in a recent 
work. Implementing the GWO outcomes in power costs of 801.8441 
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($/h), which are identical to those of the PSO and FPA techniques, 
shows its validation. Also, from the base case results, it can be seen 
that GWO outperforms the other reported algorithms. Further, the 
convergence curve of PSO and GWO shown in Fig. 3 discloses the 
speediness of the proposed GWO over the PSO.

Furthermore, the bilateral and multilateral transactions referred 
from ref. [31] have been incorporated to create a contingency situ-
ation in the system. In this work, RPTCDFs are used to allocate the 
ideal placements for the optimum-sized DGs with respect to the 
congested line 6–8. Based on the outcomes of the OPF test, the cal-
culated RPTCDFs are displayed in Table VI and are signified graphi-
cally in Fig. 4 for each bus. Therefore, it has been determined to 
insert wind DG and PV DGs on bus number 28 and bus number 29, 
respectively, as well as biomass DG on bus number 8, in order to 
reduce congestion in line 6–8. From this perspective, the maximum 
power output (PDG

max) delivered by a renewable distributed genera-
tor is limited to 60 MW. The GWO method was used to optimize the 
proposed objective function, which was first solved by optimiz-
ing a single objective before being solved using a multi-objective 
approach. The power flow through lines 6–8 before optimization 
was 36.15 MVA, exceeding its thermal limit of 32 MVA and indicating 
congestion. After the proposed DG placement and dispatch strat-
egy, the flow was reduced to 30.19 MVA, resolving the congestion. 
This demonstrates the effectiveness of the proposed approach in 
alleviating line overload.

C. Findings With a Single Objective
In this case, the weight factor is considered as 1 and 0, and vice versa, 
for each objective during the execution of the programmed algo-
rithm. When a single target is considered, the BM DG capacity and 
actual losses are calculated with respect to two objectives: voltage 
deviation and loss minimization. The lower and upper capacity of BM 
DG and losses for different seasons are obtained by the thought pro-
cess of the single objectives, respectively, which are given in Tables 
VII and VIII respectively.

Existing power losses have increased when capacities are changed 
independently, as seen in Tables VII and VIII. When the losses are 

augmented separately, the capacities also diverge from their ideal 
standards, which is shown in Figs. 5 and 6, which indicates that while 
one of the goals in the CM problem is optimized, the other objective 
deviates from its optimal standards. As a result, finding an optimal 
exchange solution between the opposing goals is achievable.

D. Findings With Multi-Objectives
In this case, the weight factor is set at 0.5 for W1 and 0.5 for W2 
during the execution of the algorithm, as there are only two objec-
tives in the equation, resulting in equal weightings being assigned. 
Table IX shows BMDG sizes and Table IX represents losses with multi-
objective cases.

It is observed in Table IX as well as through Fig. 6 that the BMDG 
capacity is less in the summer season, as solar and wind DG output is 
higher. To manage system congestion, the optimal capacity of BMDG 
required is less. Fig. 7 shows the LM for autumn, considering both a 
single objective and multiple objectives for the duration of the day.

Real power losses when taking into account all objectives at once 
are shown in Fig. 8, and the minimum and maximum values of real 
losses when taking into account multiple objectives are shown in 
Table IX. Similarly, in Tables V and VI cover two objectives, namely 
voltage deviation and loss minimization, showing how the opti-
mal solution changes in both cases if only one target is consid-
ered. Therefore, when solving any problem, one needs to take into 
account several objectives, often known as a Pareto Optima Set. 
The only difference between the losses for single and multiple 
objectives over all seasons was that nearly identical results were 
observed.

Fig. 9 shows the LM for the autumn season when looking at individ-
ual objective voltage deviation, loss reduction, and multiple objec-
tives. Overall, the results show that the recommended approach 
reduces network line congestion more effectively than single-objec-
tive approaches for each given problem. The voltages of each bus 
during congestion and after DGs are added to relieve congestion are 
displayed in Fig. 10, which indicates that the voltage of congested 
lines has improved.

Fig. 2.  Results for a randomly chosen location’s PV and wind turbine distributed generator outputs.
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Using both single-objective and MOO frameworks, this study 
examined how to optimize BMDG capacity to minimize power loss 
and voltage deviation inside an electrical grid. Minimizing volt-
age variation was the main goal in the single-objective scenario. 
Table VII illustrates how the enhanced biomass capacity successfully 
offsets variations in renewable energy sources, resulting in a notable 
improvement in voltage stability throughout the network.

In addition to improving power supply dependability, lowering 
voltage deviation also reduced the chance of equipment damage 
and operational interruptions. Table VII displays somewhat higher 
loss values. On the other hand, compared to Table VII for the volt-
age deviation target, Table VIII illustrates how optimization resulted 
in a discernible reduction in power losses across the network when 
power loss minimization was taken into account as a single objec-
tive. In order to ensure more efficient use of energy, the biomass 
capacity was calibrated to work in tandem with the solar and wind 

resources listed in Table VII. This strategy demonstrated the financial 
advantages of including biomass in the energy mix by resulting in a 
lower total operating cost.

The trade-offs between voltage deviation and power loss minimi-
zation became clear when the research was expanded to a MOO 
framework, as Table IX demonstrated. A more thorough assessment 
of the system’s performance was made possible by the multi-objec-
tive approach, which finally led to the identification of the best bio-
mass capacities that balanced the decrease of both objectives. The 
findings showed that the MOO provided a synergistic solution that 
maximized overall system dependability and efficiency, even while 
notable gains in voltage stability and power loss reduction could be 
achieved separately.

The results support a multi-objective approach as a better way 
to improve grid performance, guaranteeing that efficiency and 

TABLE I.  MEAN AND STANDARD DEVIATION OF SOLAR IRRADIANCE (KW/M2) IN THE STUDY PERIOD [8]

Hour

Summer Autumn Winter Spring

μs σs μs σs μs σs μs σs

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0.0032 0.0045 0 0 0 0 0 0

6 0.1278 0.0406 0.0707 0.0299 0.0300 0.0417 0.0158 0.0196

7 0.2538 0.0714 0.2177 0.0433 0.1623 0.0463 0.1605 0.0332

8 0.3824 0.1189 0.3988 0.0803 0.3741 0.0669 0.3412 0.0658

9 0.4908 0.1388 0.5465 0.1121 0.4732 0.0669 0.5060 0.1002

10 0.5680 0.1659 0.6442 0.1336 0.5831 0.0998 0.6385 0.1319

11 0.6164 0.1445 0.6827 0.1492 0.6463 0.1219 0.7120 0.1551

12 0.5990 0.1175 0.6645 0.1452 0.6496 0.1262 0.7305 0.1510

13 0.5614 0.0995 0.5923 0.1282 0.5921 0.1117 0.6780 0.1283

14 0.4672 0.0788 0.4731 0.0999 0.4786 0.0838 0.5699 0.1011

15 0.3548 0.0550 0.3121 0.0635 0.3228 0.0515 0.4124 0.0765

16 0.2228 0.0410 0.1402 0.0309 0.1609 0.0382 0.2394 0.0446

17 0.1030 0.0276 0.0057 0.0112 0.0269 0.0372 0.0834 0.0230

18 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0
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reliability objectives are satisfied at the same time. To further 
improve the robustness of the suggested methods, future research 
could investigate dynamic optimization strategies and the integra-
tion of real-time data.

TABLE II.  MEAN AND STANDARD DEVIATION OF WIND SPEED (M/S) IN THE STUDY PERIOD [8]

Hour

Summer Autumn Winter Spring

μs σs μs σs μs σs μs σs

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0.0032 0.0045 0 0 0 0 0 0

6 0.1278 0.0406 0.0707 0.0299 0.0300 0.0417 0.0158 0.0196

7 0.2538 0.0714 0.2177 0.0433 0.1623 0.0463 0.1605 0.0332

8 0.3824 0.1189 0.3988 0.0803 0.3741 0.0669 0.3412 0.0658

9 0.4908 0.1388 0.5465 0.1121 0.4732 0.0669 0.5060 0.1002

10 0.5680 0.1659 0.6442 0.1336 0.5831 0.0998 0.6385 0.1319

11 0.6164 0.1445 0.6827 0.1492 0.6463 0.1219 0.7120 0.1551

12 0.5990 0.1175 0.6645 0.1452 0.6496 0.1262 0.7305 0.1510

13 0.5614 0.0995 0.5923 0.1282 0.5921 0.1117 0.6780 0.1283

14 0.4672 0.0788 0.4731 0.0999 0.4786 0.0838 0.5699 0.1011

15 0.3548 0.0550 0.3121 0.0635 0.3228 0.0515 0.4124 0.0765

16 0.2228 0.0410 0.1402 0.0309 0.1609 0.0382 0.2394 0.0446

17 0.1030 0.0276 0.0057 0.0112 0.0269 0.0372 0.0834 0.0230

18 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0

TABLE III.  SPECIFICATION OF PV MODULE [8]

Parameters Value

Voltage at maximum power point, VMPP 28.36 V

Voltage at maximum power point, IMPP 7.76 A

Open circuit voltage, Voc 36.96 V

Short circuit current, Isc 8.38 A

Nominal cell operating temperature, NOT 43°C

Current temperature co-efficient 0.00545 A/ °C

Voltage temperature co-efficient 0.1278 V/ °C

TABLE IV.  SPECIFICATION OF WIND TURBINE

Attribute Value

Rated output power, Prated 250 kW

Cut-in-speed, vcin 3 m/s

Nominal wind speed, vN 12 m/s

Cut-out speed, vcout 25 m/s
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VII. CONCLUSIONS

The optimal BMDG capabilities have been taken into account, along 
with the variable nature of solar and wind DG, to address and solve 
the problematic CM of transmission. Multiple objectives are consid-
ered and merged into a single objective function in order to achieve 
the optimal sizes of the DGs. The GWO algorithm is utilized to find 
the ideal DG sizes for integrating into the actual bulk power grid. The 
IEEE 30-bus is used to observe the strength of the recommended 
process. Maximum BMDG capabilities for the single voltage devia-
tion objective were determined to be 9.5144 MW in the summer, 
while the lowest capacities were found to be 9.266 MW in the spring.

In the case of multi-objective maximum BMDG capacities, 9.9533 
MW was found in winter, while the minimum is 9.0196 MW in the 
summer season. Results further indicate that the DG insertion 

TABLE V.  BASE CASE LOAD FLOW’S FINDINGS

Generator 
Number

Particle Swarm 
Optimization (PSO) 

[30]

Flower Pollination 
Algorithm (FPA) 

[30]
Grey Wolf 

Optimization

G1 176.6624 178.177 176.6482

G2 48.8103 52.905 48.7265

G3 21.4607 23.184 21.5016

G4 21.7339 16.768 21.7097

G5 12.1028 10 12.1788

G6 12.0 12 12.0

F ($/h) 801.8437 802.675 801.8441

Ploss (MW) 9.3510 9.633 9.3648

Megavolt-
Ampere 
(MVA) limit

​ ​ ​

Fig. 3.  Base case convergence curve of the Grey Wolf optimization 
and PSO algorithm. TA
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Fig. 4.  Value of RPTCDF for 30 buses.

TABLE VII.  BIOMASS DISTRIBUTED GENERATOR (MW) CAPACITIES

​ Minimizing Voltage Deviations Minimizing Real Power Losses

FPA [29]Season Minimum Maximum Mean Minimum Maximum Mean

Summer 9.3846 9.5144 9.8931 57.71 58.29 58.93 UPF = 8.094
09. PF Lag = 8.276Autumn 9.3848 9.482 9.0157 57.64 58.31 58.94

Winter 9.3627 9.5169 9.8983 57.65 58.19 58.95

Spring 9.266 9.4181 9.8883 57.64 58.29 58.97

TABLE VIII.  REAL POWER LOSS (MW)

​ Minimizing Voltage Deviations Minimizing Real Power Losses FPA [29]

Season Minimum Maximum Mean Minimum Maximum Mean ​

Summer 8.5714 9.2081 9.9332 5.9077 6.0117 6.901 UPF = 8.980.9 PF Lag = 9.080

Autumn 8.5068 9.2132 9.8703 5.9079 6.0215 6.9389

Winter 8.5086 9.1051 9.8496 5.9713 6.0244 7.1019

Spring 8.6127 9.2026 10.0229 5.9618 6.1237 7.0131

Fig. 5.  Total Losses (MW) with distributed generators while losses are considered as an objective during 24 hours are considered.
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enhances the voltage profile and reduces potential power losses. 
The recommended method is ultimately acknowledged as having 
successfully reduced congestion and has been quickly applied to 
real, complex, non-linear optimization issues related to the power 
scheme. The findings advocate for a multi-objective approach as a 
more effective strategy for enhancing grid performance compared 
to a single objective.

This study primarily focused on the GWO for MOO and validated the 
results by comparing them with a single algorithm from the litera-
ture. A broader comparison with multiple metaheuristic algorithms 
could provide deeper insights into the relative performance of GWO 
in solving biomass capacity optimization problems. The analysis con-
sidered specific system parameters and constraints without incorpo-
rating real-time variations in load demand and market dynamics. 

Fig. 6.  Whole Losses (MW) with distributed generators, while voltage deviation is considered as an objective during 24 hours are considered.

TABLE IX.  BIOMASS DISTRIBUTED GENERATOR CAPACITIES AND REAL POWER LOSSES DURING MULTI – OBJECTIVE OPTIMIZATION

Season

BM DG (MW) Capacity

FPA [29]

Real Power Losses (MW) FPA [29]

Minimum Maximum Mean Minimum Maximum Mean ​

Summer 9.0196 9.8003 9.4373 UPF = 8.094
09. PF Lag = 8.276

8.7724 9.2785 9.0041 UPF = 8.98
0.9 PF 

Lag = 9.080Autumn 9.1219 9.9021 9.4161 8.6643 9.2961 9.0739

Winter 9.1106 9.9533 9.4377 8.7058 9.3055 8.9573

Spring 9.0268 9.0147 9.4076 8.6481 9.3174 8.9521

Fig. 7.  Biomass distributed generator (MW) capacity when all objectives are considered during a 24-hour period.
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Fig. 8.  Losses (MW) when considering all objectives during 24 hours.

Fig. 9.  Loss margin during the autumn season with all and just one goal over a 24-hour period.

Fig. 10.  Voltage at each bus in different conditions.
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Future research can extend this work by integrating dynamic system 
conditions and uncertainty modeling to enhance the robustness of 
the optimization framework.

NOMENCLATURE

FF	 Fill factor

S	 State variable

IMPP	 Current (A) at the maximum power point

VMPP	 Voltage (V) at maximum power point

ISC	 Short circuit current (A)

KV,KI	 Voltage and current temperature co-efficient (V/ °C and A/ °C)

Ns⋅
	 Number of discrete solar radiance state

NPvmod	� Total number of Photo Voltaic (PV) modules used to form a 
PV array

NOT	 Nominal operating temperature of cell (ºC)

	 Mean value of solar radiance

gs
t 	 State/level of solar radiance at tth time segment

TcS	 Cell temperature at Sth state (ºC)

Tcg	 Cell temperature at gth state (ºC)

TA	 Ambient Temperature (ºC)

Ts⋅
	 Total number of distinct solar radiance states

υcout
	 Cut-out wind speed

VOC	 Open circuit voltage (V) 

PtWT	 Power output of wind turbine

υaS
	 Average wind speed

Prated	� Highest amount of power that Wind Turbine (WT) can 
create

P� �t g� � 	 Weibull probability distribution factor

PgWTS 	 Power generation by wind

υt
s

	 Wind speed at time t at Sth state

N 	 Total number of wind speed states

Fi	 Fuel cost of generators

ai,bi,ci	 Cost coefficients of ith Generator

Pi	 Real power generation ith Generator

Ng	 Total number of generators

P S
i 	 Generation of power from bus i

P j
d

	 Reduced electricity requirement at bus j

Prated	 Maximum power that can be generated by WT

Pgp
min 	 Minimum actual power output of every generator

Pgp
max 	 Maximum actual power output of every generator

P gS S
t( ) 	 Solar irradiance probability

RPTCDF K
2

–�Real transmission congestion distribution factors cor-
responding to a bus-n and a line-k connected between 
bus-Ῥ and bus-N

Plossdg 	 Real power losses after inserting the DG

Ploss0 	 Real power losses before inserting the DG

PPV
t 	 Hourly output of solar

Qgp
min 	 Minimum reactive power generation of each generator.

Qgp
max 	 Maximum reactive power generation of each generator.

Sl
max 	 Maximum permissible MVA line flow in line l.

V min 	 Minimum voltage limits of buses

V max 	 Maximum voltage limits of buses

δi
	 The voltage angles of ith bus

δi
max 	 The maximal limitations of voltage angles of ith bus

δi
min 	 The minimal limitations of voltage angles of ith bus

VMPP
	 Voltage (V) at maximum power point operation

Vi
DG 	 Voltage at the ith node after connecting the DG

Vi
0 	 Voltage at the ith node before connecting the DG

Wn	 nth Weight factor
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