
1

Yarkan.

A Novel Acoustic Source Loc. Tech. for Edge AI App.

Corresponding author: 
Serhan Yarkan

E-mail: 
syarkan@ieee.org, serhan.yarkan@fbu.edu.tr

Received: May 22, 2025 
Revision Requested: May 31, 2025 
Last Revision Received: June 1, 2025 
Accepted: June 4, 2025 
Publication Date: August 19, 2025

DOI: 10.5152/electrica.2025.25099

ORIGINAL ARTICLE

A Novel Acoustic Source Localization Technique for Edge AI 
Applications: A Lightweight Framework and Implementation for IoT 
and Smart Sensing Devices
Serhan Yarkan
ISTEC Cybersecurity Inc., R&D Center, İstanbul, Türkiye; Department of Computer Engineering, Fenerbahçe University Faculty of Engineering, İstanbul, Türkiye

Cite this article as: S. Yarkan, “A novel acoustic source localization technique for edge AI applications: A lightweight framework and implementation for IoT and 
smart sensing devices,” Electrica, 25, 0099, 2025. doi: 10.5152/electrica.2025.25099.

1

25

Electrica 2025; 25: 1-9

ABSTRACT

This paper presents a novel and computationally efficient three-point signal estimation method for acoustic 
direction finding, designed specifically for low-cost embedded platforms. The proposed approach offers a 
lightweight alternative to traditional cross-correlation techniques by minimizing computational complexity while 
preserving high angular resolution. The method was implemented and tested on an STM32F429 microcontroller 
using a pair of MAX4466 electret microphones arranged on a fixed baseline. The system architecture leverages 
bare-metal signal processing routines optimized with Acorn RISC Machine Cortex. Microcontroller Software 
Interface Standard (ARM CMSIS-DSP) libraries, enabling real-time performance on resource-constrained hardware. 
Extensive experiments were conducted to evaluate the angular estimation accuracy under varying signal-to-
noise ratios and source orientations. Results show that the system maintains sub-degree mean square error 
for source angles up to 30°, with noticeable performance degradation observed at 40° due to the directional 
response characteristics of the microphone elements. A comprehensive explanation is provided linking this 
degradation to reduced microphone sensitivity at wider angles of incidence. The proposed solution is ideal for 
applications requiring embedded acoustic localization, including smart interfaces, vehicular monitoring, and 
surveillance systems. In addition, the paper discusses the implications of deploying such systems in artificial 
intelligence (AI)-enabled and security-critical environments, highlighting emerging threats such as adversarial 
acoustic interference and spoofing attacks. These challenges underscore the importance of resilient and efficient 
DF methods that can operate reliably within the constraints of embedded systems. The presented work lays the 
foundation for future research in secure, scalable, and AI-compatible acoustic sensing platforms.
Index Terms—Acoustic, artificial intelligence, direction finding, internet of things

I. INTRODUCTION

Acoustic direction finding (DF) has become an indispensable component across a wide range of 
civilian and security applications. In the infotainment domain, DF enhances immersive interac-
tions in video conferencing [1] and distance learning [2], enables natural voice control in smart 
homes and television systems [3, 4], supports customer analytics in retail and advertisement ser-
vices [5], and augments spatial audio for multi-user gaming [6, 7]. While traditionally employed 
for infotainment and surveillance, recent advances in artificial intelligence (AI) and growing 
cybersecurity considerations have significantly expanded its capabilities and applications [8, 9].

In surveillance settings, acoustic DF underpins life-critical systems for driver monitoring—detect-
ing smartphone use [10, 11] and drowsiness [12]—as well as tactical applications such as gunshot 
and artillery localization [13]. Comprehensive surveys of indoor localization and DF technologies 
can be found in [9, 14].

Recent advances in AI have dramatically boosted DF performance: convolutional and attention-
based networks have been applied to raw multichannel audio for end-to-end angle estimation, 
yielding robustness to reverberation and diffuse noise [15, 16]. At the same time, the deployment 

WHAT IS ALREADY KNOWN ON THIS 
TOPIC?

•	 Recent studies have aimed to adapt 
direction-of-arrival estimation for edge 
devices, but many techniques remain 
unsuitable for microcontrollers due to 
their reliance on iterative algorithms and 
floating-point operations.

•	 Classical acoustic direction-finding 
methods achieve high accuracy but 
require dense microphone arrays, 
precise synchronization, and significant 
computational resources.

•	 Minimalist microphone configurations 
have shown potential for acoustic 
localization; however, they often 
compromise on processing speed or 
require environment-specific calibration.
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of AI-driven DF in security-critical contexts has exposed new vulnerabilities. Adversarial audio 
attacks can inject imperceptible perturbations that mislead deep models [17], while physics-
based signal-injection exploits (e.g., Poltergeist AMpLe) can compromise downstream detection 
pipelines [18]. Defenses such as SoundFence use physical-layer signatures to detect malicious 
ultrasonic interference [19]. These AI and cybersecurity considerations underscore the need for 
resilient, low-cost embedded DF platforms.

The literature review reveals that many acoustic direction finding techniques have been widely 
explored in applications ranging from robotics to IoT, with classical methods (e.g., time differ-
ence of arrival [TDOA], Steered-Response Power (SRP), and subspace-based techniques) offering 
high accuracy but demanding dense arrays, precise synchronization, and substantial computa-
tional resources [20, 21]. Recent efforts have optimized direction-of-arrival (DoA) estimation for 
edge devices [22, 23], though many still rely on iterative searches or floating-point operations 
ill-suited for microcontrollers. Minimalist microphone configurations have shown promising 
performances [24] but they often trade off speed or require environment-specific calibration. 
In contrast, this study proposes a novel three-point estimation technique that enables rapid, 
accurate direction finding using only three strategic signal features from a compact microphone 
array, eliminating the need for cross-correlation over large windows or iterative searches. To 
the author's knowledge, this is the first implementation of such a model explicitly designed 
for lightweight, real-time, low-power acoustic localization in IoT and embedded systems. The 
method is implemented on an STM32F429 microcontroller with two MAX4466 microphones, 
leveraging bare-metal processing and ARM CMSIS-DSP optimizations to achieve real-time per-
formance. Experimental results demonstrate sub-degree mean square error for angles up to 30°, 
with analysis of performance degradation beyond this range providing insights for future hard-
ware improvements. By bridging classical array processing and edge-computing constraints, 
this work advances practical, resource-efficient smart sensing systems. The key contributions 
are as follows:

•	 A novel three-point signal estimation method is proposed and implemented for lightweight 
acoustic direction finding, offering a computationally efficient alternative to traditional cross-
correlation-based techniques.

•	 The method is validated on a real-time embedded system, demonstrating its low processing 
overhead and ease of deployment on cost-effective microcontroller platforms.

•	 The adaptive structure of the method enhances its resilience and security, supporting the devel-
opment of robust direction-finding solutions for AI-driven and security-critical applications.

The rest of the paper is organized as follows. Section II outlines the signal and system model for 
the problem of interest. Section III discusses the implementation of the proposed method on an 
embedded system as well as the measurement campaign where the implementation is used to 
collect data. Section IV gives the results. Finally, Section V concludes the paper.

II. SIGNAL AND SYSTEM MODEL

A linear array with M acoustic sensors (i.e., microphones) is assumed to present with equally 
spaced intervals, say d located on a plane to detect the direction of K acoustic sources. Without 
loss of generality, let M = 2 and correspondingly K = 1, and both source and sensors are coplanar 
[1]. The single source, say S, is assumed to emit acoustic energy which could spread around a 
carrier in the far-field of the sensors. The geometric configuration illustrated in Fig. 1 depicts a 
simplified acoustic direction-finding scenario using a two-element planar microphone array. The 
microphones, labeled as mL and mR, are placed symmetrically on a horizontal sensor plane with a 
baseline spacing denoted by d. An acoustic source S emits wavefronts that propagate toward the 
array at an azimuthal angle θ with respect to the array’s broadside (normal). Under the far-field 
assumption, the incident acoustic wavefronts can be modeled as planar and equidistant, arriving 
at each sensor with a predictable time offset. In this configuration, the wavefront first reaches the 
microphone that is closer to the source direction-in this case, mR—resulting in a TDOA between mL 
and mR. This TDOA corresponds to a physical path difference Δd = dsin (θ), as indicated by the brace 
annotation in the figure. The planar wavefronts are visualized with dashed lines intersecting both 
microphones and the direction of wave propagation is marked with curved arrows. A perpendicu-
lar reference line (normal) is also drawn from the center of the sensor plane to highlight the angle 
θ between the incident wavefront and the array axis. This geometry provides the analytical basis 
for calculating the angle of arrival (AoA) from measured TDOA values and is fundamental to time-
domain acoustic localization methods.

WHAT THIS STUDY ADDS ON THIS 
TOPIC?

•	 This study introduces a novel three-point 
signal estimation technique that enables 
fast and efficient acoustic direction 
finding without the need for heavy cross-
correlation or iterative computations.

•	 The proposed method is successfully 
deployed on a low-power STM32 
microcontroller, showcasing real-time 
performance with minimal processing 
overhead on cost-effective hardware.

•	 By combining classical signal processing 
principles with edge-computing 
constraints, the study delivers a scalable 
and secure solution for smart sensing 
in artificial intelligence–driven and 
embedded systems.
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Based on the discussion above, under the narrowband assumption, 
the acoustic pressure that is perceived by each and every sensor 
could then be written as in (1):

S t Re p t e J f tc� � � � �� �2� 	 (1)

where J p t� � � �1;  denotes the complex baseband equivalent of 
the transmitted signal; fc is the carrier frequency; and e ��� denotes 
the real part of its input. A representative sketch of the problem is 
given in Fig. 1.

Any source location that is not on the normal line leads to a delay 
in the detected acoustic pressure for one of the sensors due to the 
geometry of the problem. It is known that acoustic waves traverse 
the propagation medium with a finite speed which can be character-
ized by (2):

� �� � � ��331 3 0 606. . 	 (2)

where ĸ is the ambient temperature in degrees Celsius under the 
assumption of no humidity assumption. Furthermore, the carrier 
frequency, fc, imposes certain restrictions on the identifiable spatial 
regions due to the wavelength-sensor interval relationship. As stated 
before, considering the narrowband assumption, d is chosen to sat-

isfy d
fc

�
1
2
�

 in order to avoid the spatial aliasing problem around the 

normal in Fig. 1. Furthermore, sensors are assumed to be directional 
in such a way that only the sources that fall in the upper part of the 
sensor plane are of interest as indicated in Fig. 1 [2].

A general linear, time-varying complex baseband channel impulse 
response is given by (3):

h t a t t t ek k

k

N
j f t tk

D
k( , ) ( ) ( ( )) ( ( ) ( ))� � � � �� �

�

��
1

2 	 (3)

where N is the number of resolvable multipath components; ak �� � is 
the magnitude of the k-th component; � �� �  is the Dirac delta func-
tion; �k �� � is the k-th delay; fk

D �� �  and �k �� �  are the Doppler shift and 
phase offset experienced by the corresponding k-th multipath com-
ponent, respectively, and j � �1. Depending on the scenario, a fur-
ther extension is possible by considering (4):

h t a t t t ek k
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D
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2 	 (4)

as a major contribution of the power is obtained by the specular 
component, sk (t), along with a relatively weaker contribution of a 
diffused component, dk (t), where (5, 6) given by:
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This way, the receiver, if possible, could be designed based on the 
perspective given in (4). This representation also paves way for 
arranging resolvable multipath components via certain parameters 
according to the communication scenario to be considered for vari-
ous purposes. As given in (4), σsk  is the magnitude of the possibly 
present specular component; fD is the maximum Doppler frequency 
shift observed by the receiver. From the statistical point of view, 
the power of the specular and diffused components could best be 
observed under the wide-sense stationary assumption by (7):
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Once the normalized version is considered, then (8):
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is obtained.

Given h (t, τ), the received signal at the baseband is generally 
expressed in the form of (9):

r t x t h t t� � � � � � � � � � ,� � 	 (9)

where x (t) is the transmitted signal at the baseband;   denotes the 
convolution operator; ω(t) is the complex baseband additive white 
Gaussian noise term consisting of both in-phase and quadrature 
components, ω1(t) and ωQ(t), respectively, where each component 

is  0 22, /��� � . Without loss of generality, channel statistics are 

assumed to be stationary (in any sense) for a sufficiently long period 
of time. Furthermore, in order to have a more tractable analysis, the 
expression as given in (9) is assumed to be of the following form as 
given in (10):

r t x t h t t� � � � � � �� � � � 	 (10)

where the channel, h(t), acts as a linear, time-invariant filter.

Considering the received signal then,

Fig. 1.  Geometry of a simple acoustic direction finding system.
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could be written. Here, the nature of x (t) and therefore its correlation 
characteristics, �x �� � are important. In case the human vocal tract is 
considered to be the acoustic source, several features are prominent 
such as formant frequencies and temporal decorrelation. In the litera-
ture, the temporal decorrelation of an average human speech ranges 
between 10–100 ms, depending on a vast set of conditions. However, 
objective measurements reveal that temporal decorrelation is statis-
tically concentrated around 15–35 ms [25]. On the other hand, in case 
data communications are of interest, temporal decorrelation is driven 
by the pulse shaping filter. At this point, one could discuss the con-
sequences of the temporal decorrelation of acoustic sources since it 
is directly related to the operational requirements of the DF process. 
Considering the source is somehow modeled with a stationary, sta-
ble, continuous Langevin model, the temporal decorrelation nature 
of the source, �x �� �, could be expressed when Δτ → 0 as:

� � �
x eD� � � �� � 	 (12)

When px(Δτ) as given in (11) is extended by (12), the following is 
obtained for 0 < Δτ:

�
�

� � � � �K ek s dk k� � �� �� � �� � �� � 	 (13)

Note that the convolution operation as given in (13) includes exponen-
tial decay due to the stationary, stable, continuous Langevin model. 
Along with the translation invariant attribute of real exponentials under 
convolution integral, px(Δτ) as given in (13) could be approximated via 
the closed Newton–Cotes method. First, let � � �h k s d

k
k kKnom �� � � �� �� �� � 

In case fourth-order approximation (also known as Simpson’s 3/8 

method) is adopted under the assumption 0 ≤ Δτ < ΔTc with ΔTc being 
the channel decorrelation duration as in (14):
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is obtained. In order to better see both the impact of channel and 
transmit signal, the expression as given in (13) could be rewritten in 
light of the expression as given in (12) and as in (15):
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is obtained. Given the fact that the channel statistics remain the 
same for two different sensors within a single observation frame, 
cross-correlation of sensors yields:
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where Δt is the duration for the wavefront to traverse distance 
sketched in Fig. 1 while satisfying D

D
t

d
�

�
 in conjunction with the 

expression as given in (2). As given in (12), in case x(t) conveys data 
(being either analog or digital), it could be concluded that decorrela-
tion time of �x �� � is less than ΔTc. Thus, the correlation ratio as given 
in (15) diminishes faster as k → 3. Consider then the expanded ver-
sion of the expression as given in (16). Then:
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is obtained. Now, in case ρhk
norm  is a sum of exponentials (as in the 

specular and diffused components each having exponential correla-
tion), for instance in the form of:

� � �� ��
h k

k
K e enorm �� �� �� � 	 (18)

then after re-expressing the equation in terms of known parameters, 
the expression as given in (17) could be simplified and:
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is obtained. From the expression as given in (17) it is clear that the 
correlation characteristics could be captured satisfactorily by the 
first three samples (excluding the zeroth index), namely the samples 
obtained at αΔTc where a�� �1 2 3, , . Furthermore, from the expres-
sion as given in (19), under specific circumstances, the correlation 
characteristics could solely be captured with the aid of a cubic poly-
nomial in terms of the evaluations at four points located at αΔTc 
where a�� �0 1 2 3, , , .

Here, one might consider why the correlation model as given in (18) 
is chosen in the first place. The form as given in (18) is physically moti-
vated for acoustic signals as it separates coherent specular reflections 
(decaying at rate α) from incoherent diffuse energy (rate β). This is a 
common model in acoustic propagation physics since direct/early 
reflections exhibit exponential decay due to absorption and spheri-
cal spreading, while late reverberation from dense multipath follows 
a similar decay law in statistically isotropic environments. Therefore, 
the model balances fidelity and tractability for far-field narrowband 
signals.

Another interesting point regarding the expression as given in (18) 
might be the alternative forms from the perspective of acoustic 
propagation. As given in (18), the expression represents the normal-
ized channel autocorrelation as a sum of two exponentials. However, 
there are different alternatives corresponding to different peculiar 
acoustic propagation scenarios. For instance, when signal reception 
takes place in enclosed spaces where resonant reflections should 
be taken into account, then �h

³Ä
r

k
Änorm D� � � � ��e fcos 2� �  would be 

a natural choice with decay rate γ and fundamental resonant fre-
quency fγ. On the other hand, in case a highly reverberant environ-
ment (e.g., concert hall) is considered, then a slow energy decay 
model �h

·

k
norm D� �

�� � � �� ��1
0

 with decay rate η could be a more 

realistic description.
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III. IMPLEMENTATION AND MEASUREMENT CAMPAIGN

A. The Platform Used in the Implementation
The experimental platform employed in this study for acoustic direc-
tion finding was built around a low-cost STM32F429 development 
board, selected for its balance of computational performance and 
resource efficiency. This microcontroller unit features a 32-bit ARM 
Cortex - M 4 processor operating at 180 MHz, equipped with 2 MB of 
flash memory and a 12-bit analog-to-digital converter (ADC) with a 
sampling rate of 2.4 mega-samples per second (MSPS). These hard-
ware specifications were deemed sufficient for implementing real-
time digital signal processing tasks required in acoustic localization. 
The system utilized multiple MAX4466 electret microphone mod-
ules as acoustic sensors, which offer onboard preamplification and 
adjustable gain. These microphones were selected due to their low 
noise performance and compatibility with microcontroller-based 
data acquisition systems, ensuring clean and consistent analog sig-
nal capture suitable for direction-finding algorithms.

In order to get a deeper insight into the system used here, specific 
details might be given in here. The signal acquisition chain was 
designed with careful attention to analog-digital interface specifica-
tions. Each MAX4466 microphone module delivers an output voltage 
interval of 0.5–2.5V (centered at Vcc/2 = 1.65V for 3.3V supply) with a 
bandwidth of 20 Hz–20 kHz, aligned with the acoustic range of inter-
est. The analog signals were digitized using the STM32F429’s 12-bit 

ADC configured at a sampling rate of 48 kHz per channel (Nyquist 
rate = 24 kHz), sufficient to capture acoustic localization features. A 
3.3V reference voltage ensured full-scale coverage of the MAX4466’s 
output range.

For real-time data transfer, Direct Memory Access (DMA) was 
employed in circular buffer mode with dual 512-sample ping-pong 
buffers (10.67 ms per buffer at 48 kHz). Buffers were triggered by the 
ADC’s end-of-conversion interrupt, minimizing Central Processing 
Unit (CPU) overhead. This setup achieved continuous streaming 
while allowing simultaneous processing of one buffer while the 
other filled—critical for maintaining signal continuity in TDOA calcu-
lations. The ADC used 14-cycle resolution (0.58 µs per sample at 180 
MHz) with right-aligned 16-bit storage, balancing timing precision 
and memory efficiency.

The signal processing algorithms were developed in ANSI C for high 
portability and were built upon the ARM CMSIS-DSP library to take 
full advantage of the available hardware acceleration. The software 
was executed in a bare-metal environment without an operating 
system, thus minimizing overhead and enabling deterministic tim-
ing behavior—crucial for time-sensitive audio signal acquisition and 
processing. The modular architecture of the codebase also permits 
straightforward migration to an operating system–based platform if 
needed. The final firmware, including all drivers and the hardware 
abstraction layer, compiled into an executable of approximately 500 

Fig. 2.  System used in real-world measurements.

Fig. 3.  Measurement results obtained for the normal angles 10–40 degrees.
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KB. Notably, the same software stack was successfully ported to a 
lower-end 32-bit Cortex M0 platform, further validating the design’s 
flexibility and computational efficiency. This embedded platform, 
combined with the low-cost MAX4466 microphone array, thus pro-
vides a robust and scalable foundation for real-time acoustic direc-
tion-finding applications. The block diagram of the system used in 
this study is given in Fig. 2.

B. Measurement Campaign and Data Collection
In the experimental setup, the acoustic direction-finding system was 
deployed in a controlled environment, using two spatially separated 
MAX4466 electret microphone modules, denoted as mL and mR, 
positioned on a fixed horizontal baseline. These microphones were 
mounted on a custom-built wooden platform designed to ensure 
mechanical stability and consistent spatial alignment. The platform 
consists of a rectangular wooden panel with two precisely drilled 
holes, spaced 17.5 cm apart, in which the microphone modules were 
embedded and securely fixed using rubber grommets to isolate 
mechanical vibrations. The microphones were oriented to face the 
same direction and positioned at the same vertical height, forming 
a symmetrical two-microphone array. The acoustic source S, repre-
senting a broadband impulsive or tonal emitter, was placed at vari-
able azimuthal angles and distances in front of the array, allowing for 
the measurement of TDOA between the microphones.

The analog outputs from mL and mR were directly connected to the 
dual-channel analog inputs of an STM32F429-based development 
board, featuring a 12-bit, 2.4 MSPS ADC and a 32-bit ARM Cortex-M4 
processor running at 180 MHz. This board served as the central pro-
cessing unit for digitizing and analyzing the acoustic waveforms in 
real-time. All signal processing algorithms, including filtering, cross-
correlation, and angle of arrival (AoA) estimation, were implemented 
in ANSI C using the ARM CMSIS-DSP library and executed in a bare-
metal environment to ensure deterministic timing behavior. The sys-
tem was powered via Universal Serial Bus (USB) and enclosed in a 
lightweight 3D-printed housing for portability and repeatability of 
the measurements. The measurement data were later transferred 
to a computer for further analysis and verification. This compact 
yet robust setup enabled accurate AoA estimation in various test 
scenarios, validating the effectiveness of the embedded TDOA-
based direction-finding system as illustrated by the geometry in the 
accompanying diagram.

To obtain absolute acoustic power levels in decibels sound pres-
sure level (dB SPL) and compute signal-to-noise ratio (SNR) for the 
MAX4466-based array, a two-step calibration and measurement 
procedure was implemented using Audacity as the digital audio 
workstation.

1) Microphone Calibration: One MAX4466 electret microphone 
module was mounted in a precision acoustic calibrator producing 
a 1 kHz tone at 94 dB SPL. The microphone output was recorded in 
Audacity at the same sampling rate used by the STM32F429 board 
(2.4 MSPS). Audacity’s Amplitude Statistics tool was used to measure 
the Root-Mean-Square (RMS) level LRMS,FS in decibels relative to full 
scale (dBFS). The calibration constant C (in dB) was then computed as

C L L L� � �� �cal RMS FS cal dBSPL, 94

2) Signal and Noise Measurement: Under identical gain and envi-
ronmental conditions, separate recordings of the signal-plus-noise 
and the ambient noise floor were made. Audacity was again used to 

extract the RMS levels Lsig+noise,FS and Lnoise,FS (both in dBFS). These were 
converted to dB SPL via

L L C L L Csig noise sig noise FS noise noise FS� �� � � �, ,, .

The true signal level Lsig (in dB SPL) was then obtained by subtracting 
the noise contribution in the power domain:

L L L
sig log sig noise noise� �� ��10 10 1010

10 10/ / ,

and the resulting SNR (in dB) was computed as

SNR sig noise� �L L .

IV. RESULTS

Measurement results for the campaign and the proposed method 
are given in Fig. 3. As can be seen from the figure, across all tested 
source angles, the measurement results exhibit a clear trend: as 
SNR increases from 0 dB to 18 dB, the mean square error (MSE) of 
the estimated arrival angle is observed to decrease consistently. 
This monotonic improvement is explained by the enhanced abil-
ity of the system to resolve the time difference of arrival between 
the two MAX4466 microphone elements as noise diminishes. Even 
at the lowest SNR levels, the MSE—plotted on a logarithmic scale—
remains finite, indicating the robustness of the embedded cross-cor-
relation algorithm. As the SNR climbs, each performance curve shifts 
downward, confirming that higher-quality acoustic inputs result in 
more accurate angle-of-arrival estimates.

A closer examination of individual source angles reveals a dis-
tinct pattern: for 10°, 20°, and 30° settings, the MSE curves over-
lap closely, and the maximum angular error is never observed to 
exceed approximately 0.5° (on a linear scale), even at the lowest 
SNR. This consistency is explained by the fact that within this 
angular range, the MAX4466 microphones maintain sufficient 
sensitivity and sub-sample time delays are reliably extracted by 
the STM32F429-based processing pipeline. However, at 40°, the 
performance curves diverge sharply under low-SNR conditions, 
with the MSE rising well above the levels observed at smaller 
angles. This degradation is attributed to the directivity pattern 
of the MAX4466: as the incident wavefront deviates further from 
the array’s broadside, microphone sensitivity falls off, produc-
ing weaker signals and poorer time-delay estimates when noise 
dominates. Consequently, at larger off-axis angles such as 40°, the 
combination of reduced sensor response and low SNR leads to 
markedly worse localization accuracy.

V. CONCLUSION

In this study, a novel three-point signal estimation technique was 
proposed and implemented for acoustic direction finding on a 
lightweight embedded platform. The method provides a compu-
tationally efficient alternative to conventional full-scale cross-cor-
relation-based approaches, significantly reducing the processing 
burden while maintaining high estimation accuracy. Experimental 
evaluations using a MAX4466 microphone array and STM32F429 
microcontroller demonstrated the system’s effectiveness across 
varying SNR regimes and angular configurations. In particular, the 
system maintained sub-degree mean square error performance for 
source angles up to 30°, with degradation at 40° explained by the 
directional response limitations of the microphone hardware.
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One of the critical aspects of the model proposed here is the impact 
of various acoustic propagation characteristics on the performance. 
Therefore, it is important to discuss the effects of such characteris-
tics on the performance of the proposed model. While the model as 
given in (18) treats the channel as a sum of two exponentials, alter-
natives like a Rician-weighted form or power-law decay may bet-
ter capture specific acoustic environments. For example, in highly 
reverberant environments (e.g., indoor settings), a power-law decay 
Á ·� ��  could replace the expression as given in (18), extending the 
effective correlation window and improving TDOA robustness at the 
cost of increased computational complexity. Conversely, a damped 
oscillator model introduces frequency-dependent correlation oscil-
lations, which may degrade AoA estimation if source spectra exhibit 
narrowband features near fr. Validating these alternatives against 
real-world measurements (e.g., anechoic vs. reverberant chambers) 
is critical to investigate their impact on system performance.

The proposed approach proves highly suitable for deployment in 
resource-constrained acoustic sensing applications, where real-time 
performance, energy efficiency, and system simplicity are critical. 
Furthermore, the integration of this embedded DF solution into 
broader AI-enabled or cybersecurity-sensitive platforms opens new 
possibilities for robust, low-cost acoustic perception in domains 
ranging from smart home interfaces to vehicular safety and tacti-
cal surveillance. Future work will focus on extending this system to 
multi-microphone arrays, integrating AI-driven anomaly detection, 
and investigating security hardening techniques to defend against 
adversarial audio threats in mission-critical environments.

While this study focuses on core localization performance, future 
work must address emerging cybersecurity threats to acoustic DF 
systems deployed in adversarial settings. Key threat vectors include 
spoofing attacks, where malicious actors inject deceptive audio (e.g., 
pre-recorded or synthesized signals) to distort TDOA estimates and 
induce false AoA readings or adversarial noise, such as low-power 
ultrasonic interference designed to disrupt correlation-based esti-
mation by exploiting hardware nonlinearities or algorithmic blind 
spots.

To mitigate these risks, two lightweight defensive strategies suitable 
for embedded platforms could be proposed: (i) Signal Authentication: 
Embedding known acoustic preambles (e.g., chirp sequences or 
spread-spectrum codes) to verify signal legitimacy before process-
ing. This leverages the STM32F429’s real-time correlation capabili-
ties to reject untrusted inputs with minimal overhead. (ii) Statistical 
Anomaly Detection: Monitoring temporal/spatial consistency of AoA 
estimates (e.g., via Huber loss or clustering) to flag outliers induced 
by adversarial manipulation. Given the system’s low computational 
footprint (<5% CPU load for baseline processing), such checks could 
be implemented without hardware upgrades.

These countermeasures would provide enhancements to the model 
proposed here without any structural changes in the design philos-
ophy of efficiency and resilience, ensuring the framework remains 
viable for security-critical applications like surveillance or access 
control. Future validation will quantify robustness against physical-
layer attacks like Poltergeist and adversarial perturbations.
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