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ABSTRACT

In this study, we propose a preprocessing pipeline for the detection and correction of distorted frames in time-lapse images obtained from phase-contrast microscopy. 
The proposed pipeline employs the average intensities of frames as a foundational element for the analysis. In order to evaluate the degree of correction required for 
intensity variance, a normalization technique is applied to the di#erence between the average intensity of a speci!c frame and the median average intensity of all 
frames within the study. Our restoration method increases the histogram similarity between the distorted and non-distorted frames, preserves trans-passing pixels in 
regions of interest, and mitigates the development of additional distortions. The e$cacy of the proposed method was evaluated using 15 395 time-lapse image frames 
from 27 experiments using our own dataset and 830 time-lapse images from four di#erent experiments obtained from the cell tracking challenge. The results of the 
validation demonstrate a high degree of numerical and visual accuracy of the proposed pipeline.
Index Terms— Blank frame, intensity variation, phase-contrast microscopy, preprocessing, restoration, video processing.
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I. INTRODUCTION

For many studies, data preprocessing is a crucial step. Data preprocessing has been demon-
strated to be vital for the success of proposed techniques in both deep-learning-based solutions 
and traditional machine learning-based solutions [1–4]. The popularity of phase-contrast micros-
copy (PCM) and its applications has increased significantly in recent years [5–10]. To achieve high 
success rates in downstream pipelines, a preprocessing pipeline that incorporates correction for 
different distortions is necessary.

Histogram equalization (HE) and adaptive HE (AHE) are often used for image enhancement 
in phase-contrast microscopy images (PCMIs). However, PCMI does not use the full gray-level 
intensity range available, so applying HE or AHE to non-distorted frames can result in significant 
changes. In comparison, contrast-limited adaptive HE (CLAHE) is a more suitable approach for 
PCMI data [11]. Contrast-limited adaptive HE displays blood vessels more clearly than HE and 
AHE, but it also generates more noise. As a result, median filtering is used as a postprocessing 
step after CLAHE. 

A de-flickering technique was proposed by [12], but it requires high frame-rate videos as input, 
whereas the videos in our data collection (in audio video interleave format with 20 fps) consist 
of frames acquired every 15 minutes. The proposed approach of [12] further differs from ours in 
that it utilizes local intensity change, but in our data, intensity variations affect the entire frame.

Other methods for intensity correction have also been proposed for magnetic resonance [13–
16], ultrasound [17], and infrared [18] images. However, these methods underperform when 
applied to PCMI data. For example, [13] suggested a physical correction method for inten-
sity nonuniformity in magnetic resonance images, while [14–16] presented computational 
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methods for magnetic resonance imaging (MRI) intensity inhomo-
geneity correction. On ultrasound B-mode images, a segmentation 
approach with inhomogeneous intensity correction was also pro-
posed by [17].

While contiguous z-stacked grayscale images are a typical feature of 
MRIs, ultrasound images, and PCMIs, the suggested approaches were 
built on the nonuniformity of the intensity distribution. For both dis-
torted and undistorted frames, PCMI mostly has a uniform intensity 
separation in the background; there is very little change in pixel 
intensities, and for non-distorted frames, all pixels are on a small per-
centage of the separation interval. Furthermore, we are looking for 
a global (whole frame) intensity correction as compared to the local 
intensity correction that the physical correction method proposed. 

Similarly, as proposed in [18], nonuniformity correction is a fre-
quent image-enhancement process used to compensate for infra-
red detector drifts caused by changes in the scene or surroundings. 
In comparison to our proposed median thresholding procedure, 
the weighted average of neighboring frames method used in [18] 
requires more computation. Our goal is not to obtain the best fit 
with the following frames, because the best-fitting histogram may 
cause new noises, as discussed in Section III.

 In this paper, we present a novel pipeline that takes a video (PCM 
time-lapse images) as input, generates appropriate quality-related 
metrics, and corrects any detected distorted frames. The pipeline 
currently detects and restores blank frames as well as frames with 
intensity variation. 

The paper is organized as follows: The PCM data used are described 
in Section II, the proposed detection and restoration solutions for 
blank frame and intensity variation distortions are introduced in 
Section III, the results of our proposed solutions are reported in 
Section IV, and the findings are summarized in Section V.

II. DATA

The dataset used in this study was provided by the Molecular Biology 
and Genetics Department at the Izmir Institute of Technology. 
It comprises 27 PCM cell motility assays, with a focus on detect-
ing and correcting two specific types of distortions: blank frames 
and intensity variations. Visual examples of these distortions can 
be found in the links of references [19] and reference [20]. In addi-
tion to our dataset, the proposed algorithm was also evaluated 
on the cell tracking challenge dataset [21–23], which contains 830  
non-distorted frames. 

Ground truth classifications for both datasets were provided by 
experts through two different methods: 1) video-level classifica-
tion, which involved watching a video and categorizing it accord-
ing to the type of distortion present and 2) frame-level classification, 
where each frame of a video was visually analyzed using ImageJ 
software [24] categorized according to the type of distortion 
observed. It should be noted that in frame-level ground truth classi-
fication, monotonically decreasing intensity distortion, which is also 
observed in our dataset, was not considered as it can be attributed 
to the nature of the experiments.

III. METHODS

We focus on the detection and restoration of blank frames and inten-
sity variations, which are commonly observed in Z-PCM images. 

These distortions present challenges for cell-tracking algorithms, as 
blank frames may result in the loss of cell trajectories, and intensity 
variations can lead to the extraction of inconsistent or unrepresenta-
tive features for segmentation algorithms. Our restoration approach 
is based on the assumption that the pixel intensity distribution of a 
given frame follows a half-normal distribution [25] and that the dis-
tribution does not have a long tail. 

The proposed method is outlined in the flowcharts shown in Fig. 1. 
The flow starts with reading the video format of PCM time-series 
images. Then, the calculation of average frame intensity (AFI) is 
started and when the last frame is calculated, the calculation of AFI 
has been completed. The AFI values will be used for both blank frame 
and intensity variation distortion detection and reconstruction parts 
of the algorithm. Because of that reason, AFI values have been saved 
into a vector. In blank frame detection, AFI vector values are floored, 
and if they reach zero, related frames are flagged as blank frames. 
The intensity variation detection and reconstruction algorithm fol-
lows the blank frame detection part. The first frame is recalled from 
the video and the AFI values of the related frame are compared with 
α times the median value of the floored AFI vector. Selecting the suit-
able α value is explained in the following paragraphs. If the differ-
ence between current and α times median AFI values is not coherent 
with distortion, the related frame will be written into a new video 
and then continue with the next frame. If the next frame is flagged 
as blank frame distortion, the related frame is just skipped, and if 
the difference of current and α times median AFI values is coherent 
with intensity variation distortion, the reconstruction algorithm will 
be triggered. The standard deviation of AFI values will be calculated, 
and the result will be normalized by dividing by 255, which shows 
the error percentage between related frames. The current frame’s 
every pixel will be rearranged with that error percentage. Pixel inten-
sities will either increase or decrease, depending on whether the 
related frame is getting darker or brighter. The reconstructed frame 
is written into the new video with respect to related order, and the 
algorithm calls the following frame until the last frame is read. Then, 
the generation of the new video is completed as the output of the 
algorithm.

Blank frames in our dataset are a result of laboratory data collec-
tion errors and/or intentionally inserted for the purpose of analysis. 
Regardless of the cause of blank frames in videos, they negatively 
impact downstream processes such as cell segmentation and cell 
tracking. In some videos, the intensity between neighboring frames 
abruptly changes. The origin of this distortion is uncertain, but 
experts agree that it is the result of unintentional changes in the 
brightness of the light source. The pseudo code of the proposed 
blank frame detection algorithm is given in Fig. 2. In a nutshell, the 
AFI is calculated for every frame. Then, its floored version is thresh-
olded using a fixed value of 0. Frames satisfying this thresholding 
(i.e., = 0) are flagged as blank frames.

Acceptable error percentage of intensity variation is denoted by α in 
Fig. 1. To determine a suitable value for this parameter α, five videos 
from our data collection were studied, and an experimentally opti-
mal value of 0.3 was selected. Accordingly, fluctuations in intensity 
that are higher than 30% of the average intensity of the adjacent 
frames are flagged. The restoration algorithm is performed after 
the detection algorithm, using both the video and the results of the 
detection as inputs. The pseudo code of the proposed intensity vari-
ation detection and restoration algorithm is given in Fig. 3. Simply, to 
detect frames with intensity variation, each frame’s AFI is compared 
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Fig. 1. Flowcharts of our proposed blank frame detection and intensity variation correction algorithms. Here, AFI stands for average  
frame intensity, α represents acceptable error percentage, VN is for nonblank vector, std() is standard deviation, and median() is for  
median operator.

Fig. 2. Pseudo code for the blank frame detection algorithm.
Fig. 3. Pseudo code for intensity variation detection and restoration 
algorithm



Electrica 2024; 24(1): 60-66
Ucar et al. A Restoration Pipeline for PCM Time-Lapse Images

63

against α × median (AFI vector) and flagged as frames with lower or 
higher intensities accordingly. Here, the AFI vector corresponds to 
the AFI values across the whole video. Finally, reconstruction in the 
flagged frames is realized by adjusting their intensities with the stan-
dard deviation of the normalized AFI vector. An exemplary result can 
be seen in Fig. 4 where the distorted frame (Fig. 4-a) is reconstructed 
using traditional histogram matching technique (Fig. 4-b) and the 
proposed algorithm (Fig. 4-c).

Phase-contrast microscopy image histograms typically occupy 
only a small portion of the 8-bit intensity range. When an inten-
sity variation occurs, the histogram distribution tends to cover a 
broader spectrum. A histogram matching (HM) technique was used 
to test the hypothesis that it is possible to restore distorted frames  
using the histograms of non-distorted frames. The distorted frame 
and the frame that returned the median value of the AFI vector  
were the inputs to the HM method. However, as shown in Fig. 4-c,  
the HM algorithm also caused the following distortions: salt noise  
at the center of the frame, very high intensities at the center of cells, 
and regional intensity changes.

We have developed a new approach to address the limitations of the 
HM method. Our approach 1) preserves regional intensity changes, 
2) does not introduce additional noise, and 3) generates a histo-
gram that closely resembles the non-distorted frame. We calculate 
the normalized standard deviation (σn) of the distorted frame and 
express the difference between the median AFI and the average 
intensity for the current frame as σn. To make the algorithm more 
robust to changes, we chose to use the median value of the AFI of 
frames rather than the mean value. The restored frame is generated 
using (1) by adjusting each pixel at a specific rate while still preserv-
ing the regional trans-passing information of the PCMI.

K = [l × (1 − σn)] (1)

where I is an n × m intensity matrix, σn is the normalized standard 
deviation, and K is the output of (1).

In our analysis, we employed (1) as a means of reconstructing the 
frames of the image sequence under consideration. However, it was 
observed that the output presented a significant reduction in pixel 
intensities. In order to address this issue, we modified the equation 
to become (2). This modification ensured that the regional trans-
passing pixels were retained while simultaneously reducing the pixel 
intensities by a specific rate.

Furthermore, in order to further enhance the quality of the recon-
structed frames, we employed (3), which arithmetically modifies 

the pixel intensities. The final step in our reconstruction process  
involved calculating the final equation, (4), by taking the median of 
the resulting frames from (2) and (3). The output generated by this 
final equation is illustrated in Fig. 4-b and demonstrates the effec-
tiveness of our proposed method in improving the quality of the 
reconstructed frames.
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where ˆ i
n  refers to the I’th element of the normalized standard  

deviation, σn. J is a matrix of ones with the same size as I, L is the  
output of (2), M is the output of (3), and R is the output of (4) which  
is the reconstructed frame.

Fig. 5 displays a sample distorted frame, its reconstructed version 
which was generated using our suggested technique, and a subse-
quent non-distorted frame together with the relevant histograms. As 
shown, the histogram of the distorted frame covers a wider region of 
the 8-bit spectrum than the histogram of the non-distorted frame.

We used traditional performance metrics to evaluate the effective-
ness of our proposed algorithms in detecting distortions. These met-
rics include true positive (TP), false positive (FP), true negative (TN), 

and false negative (FN), as well as the accuracy ( TP TN
TP TN FP FN

+
+ + +

), 

sensitivity ( TN
TN FP+

), and specificity ( TN
TN FP+

) scores derived from 

them. In this context, a TP indicates a correctly detected distorted 
frame, and a TN refers to a correctly detected non-distorted frame. 
The performance of the algorithms was evaluated both on a frame-
by-frame basis, considering each individual frame, and on a video-
by-video basis, where a video was labeled as non-distorted if it did 
not contain any distorted frames.

IV. RESULTS

In the PCM dataset provided in Section II, we evaluated the effective-
ness of our detection methods for blank frame and intensity varia-
tion distortions at both the frame and video levels. The performance 
of our method for detecting blank frames achieved perfect scores 
of ‘’1” for accuracy, sensitivity, and specificity. This indicates that our 
method correctly detects every blank frame without any false alarms 

Fig. 4. (a) A distorted frame, (b) output of the proposed intensity restoration algorithm applied on the distorted frame, and (c) output of the 
conventional histogram matching (HM) applied on the distorted frame. Structural similarity metric between (a) and closest non-distorted frame 
is 0.49 and between (b) and closest non-distorted frame is 0.85. Red boxes represent the distortions the HM algorithm caused, namely salt noise 
at the center of the frame, very high intensities at the center of cells, and regional intensity changes. 
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for both our own dataset and the CTC: Cell Tracking Challenge data-
set. It is important to note that the PCM dataset is unbalanced, with 
only 164 of the 15 395 frames having blank frame distortion and 446 
having intensity variation distortion, resulting in an overall distorted 
frame rate of 0.04%. Despite this imbalance, the proposed approach 
demonstrates robustness.

In terms of intensity variation reconstruction, our proposed algo-
rithm generates more visually pleasing results than the traditional 
HM technique Fig. 4. The accuracy, sensitivity, and specificity values 
for the detection of intensity variations at both the video and frame 
levels are shown in Fig. 6 for both our own dataset and the CTC data-
set. As seen in Table I, the algorithm achieves highly accurate video 
level detection with only 4 FNs. As mentioned in Section II, mono-
tonic intensity variation videos were not labeled at the frame level, 
and it should be noted that 386 FPs (Table I) belong to such videos.

Overall, our proposed technique effectively restores intensity varia-
tions by providing a histogram that mimics that of the following 

Fig. 5. Distorted frame and its histogram (column a), the next non-distorted frame and its histogram (column b), and output of the proposed 
intensity reconstruction algorithm output of the distorted frame and its histogram (column c). Structural similarity metric between (a) and (b) is 
0.7533 and between (a) and (c) is 0.8376.

TABLE I. VIDEO AND FRAME-LEVEL CONFUSION MATRICES OF OUR 
PROPOSED INTENSITY VARIATION DETECTION ALGORITHM FOR OUR 
DATASET AND CTC DATASET SEPARATELY

TP FP TN FN

Our dataset Video-level detection 9 0 14 4

Frame-level detection 413 386 14 538 31

CTC dataset Video-level detection 0 0 4 0

Frame-level detection 0 0 830 0

FN, false negative; FP, false positive; TN, true negative; TP, true positive.

Fig. 6. Accuracy, sensitivity, and speci!city scores of our intensity 
variation detection algorithm computed over our own dataset and 
the CTC dataset at frame and video levels.
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non-distorted frame without introducing further distortions such 
as rapid local intensity changes or noise. As can be seen in Fig. 5, 
the histogram of the distorted frame mimics (in this case, becomes 
narrower) that of the following non-distorted frame. Additionally, 
our proposed algorithm achieved higher structural similarity val-
ues between reconstructed and closest non-distorted frames com-
pared to distorted and closest non-distorted frames. For the image 
shown in Fig. 4, the structural similarity metric value increased 
from 0.4890 to 0.8539, and for the images shown in Fig.  5, the 
structural similarity metric value increased from 0.7533 to 0.8376. 
The state-of-the-art methods, HE, AHE, and CLAHE applied to the 
frame shown in Fig. 5. The structural similarity metric values had 
calculated between the reconstructed and next non-distorted 
frame. The results are as follows: HE = 0.6009, AHE = 0.5673, and 
CLAHE = 0.3447. The proposed algorithm achieved a better recon-
struction with a higher similarity.

V. CONCLUSION

In this study, we presented a novel preprocessing pipeline for the 
detection and restoration of distorted frames in PCM time-lapse 
images. Our focus was on two types of distortions, blank frames 
and intensity variations across frames, which can negatively impact 
the efficiency of segmentation and tracking algorithms. By evaluat-
ing our proposed methods on PCM time-lapse images from 27 cell 
motility videos of our own dataset and four CTC experiments, we 
demonstrated exceptional performance in the detection of blank 
frames and extremely high accuracy in the detection of intensity 
variations. While blank-frame distortions can be corrected by sim-
ply excluding them from the video stream, frames with intensity 
variations must be restored in a lossless manner. To achieve this, our 
proposed restoration algorithm accurately balances the average 
intensities between frames without distorting in-frame information. 
Future studies can expand our pipeline to include the detection and 
restoration of geometric and optical deformations.
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