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ABSTRACT

The investigation of olfactory stimuli has become more prominent in the context of neuromarketing research over the last couple of years. Although a few studies 
suggest that olfactory stimuli are linked with consumer behavior and can be observed in various ways, such as via electroencephalogram (EEG), a universal method 
for the detection of olfactory stimuli has not been established yet. In this study, 14-channel EEG signals acquired from participants while they were presented with 
2 identical boxes, scented and unscented, were processed to extract several linear and nonlinear features. Two approaches are presented for the classi!cation of 
scented and unscented cases: i) using machine learning (ML) methods utilizing extracted features; ii) using deep learning (DL) methods utilizing relative sub-band 
power topographic heat map images. Experimental results suggest that the olfactory stimulus can be successfully detected with up to 92% accuracy by the proposed 
method. Furthermore, it is shown that topographic heat maps can accurately depict the response of the brain to olfactory stimuli.
Index Terms— Deep Learning, electroencephalogram (EEG), machine learning, neuro-marketing, olfactory stimulus
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I. INTRODUCTION

Consumer behavior highly depends on the emotional state of a person. Emotion can be defined 
as mental experiences with high hedonic content and high intensity [1]. Different biological sig-
nals, such as the electroencephalogram (EEG), provide vital information about the emotional 
state of the person. The reward estimate, which is associated with the orbitofrontal cortex, is one 
of the major components of purchase intention [2]. Several studies on attention, mood, and per-
sonal preferences were conducted on the human brain. Several imaging and signal acquisition 
methods, such as EEG, are currently utilized to investigate the brain. An EEG is a suitable tech-
nique for investigating phenomena connected to neuromarketing since it has a high temporal 
resolution, is inexpensive, and is noninvasive [3]. Olfactory stimulus is currently being studied 
extensively as it affects the process of making a purchase decision by altering the emotions of 
people.

Seet et al. [2] examined consumer behavior using four fragrances on 14 volunteers. Approximate 
entropy (ApEn) and relative power spectral Density (PSD) of the EEG sub-bands were used with 
several machine learning (ML) algorithms, and the combination of these two features achieved 
75.9% accuracy for the binary classification.

Ezzatdoost et al. [4] utilized EEG signals to distinguish pleasant and unpleasant scents. The fea-
tures utilized for subject-specific and cross-subject classification include Lempel–Ziv complexity 
(LZC), largest Lyapunov exponent (LLE), ApEn, and Higuchi’s fractal dimension (HFD). Using the 
entire feature set improved accuracy for both classification scenarios, and the eyes-open condi-
tion was determined to be superior to the eyes-closed condition.

Hou et al. [5] assessed various emotions, such as pleasure and disgust, by using different odors on 
11 participants. Welch’s method was utilized to derive PSD features based on EEG rhythms from 
each participant’s 35 trials for 13 fragrances. The Support Vector Machine (SVM) outperformed 
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the other classifiers with a 98.9% accuracy rate. Afterward, classes 
were increased to 5, and although less precise, an accuracy of 88.5% 
was adequate [5].

Many researchers [6–8] used nonlinear and linear features that can be 
extracted from the EEG signals, including higher-order moments in 
the time and frequency domains, differential entropy, Hjorth param-
eters (HPs), Lyapunov exponent, EEG sub-band powers, detrended 
fluctuation analysis, fractal dimension (FD), and LZC [4]. To identify 
olfactory cues, researchers have used these nonlinear characteris-
tics in the EEG data. Kroupi et al. [9] employed a linear discriminant 
analysis (LDA) classifier to detect odor pleasantness using permuta-
tion entropy (PE) and minimum cover (MC) dimension features and 
achieved accuracy rates of up to 90% in some circumstances, with a 
mean accuracy of 53.89% for MC and 56.16% for PE features. Aydemir 
[10] employed linear and statistical characteristics, as well as nonlin-
ear features, to classify odors and subjects using multiple ML meth-
ods. Auto-regressive, statistical, and band power features performed 
better under certain situations, reaching up to 96.94% for the four-
odor classification, respectively. Ezzatdoost et  al. [4] classified four 
odors and pleasantness using nonlinear characteristics and ML classi-
fiers and obtained 64.3% and 54.8% accuracy in odor recognition [4].

Throughout the years, several classification methods have been 
proposed, including SVM, LDA, Bayesian classifiers, and k-nearest 
neighbors (k-NN). However, as publicly available datasets with huge 
amounts of experimentally obtained EEG signals became available, 
researchers began to employ deep learning (DL) techniques [11]. 
The widely used DL approaches in emotion recognition tasks are 
deep belief networks (DBN), multi-layer perceptron neural networks 
(MLPNN), convolutional neural networks (CNN), and recurrent neural 
networks (RNN) [12]. Recently, several studies have stated that the 
CNN approach is highly successful in feature extraction and classifi-
cation tasks [13-16].

Rahman et  al. utilized a CNN model on the Emotion EEG Dataset 
(SEED) dataset by giving topographic pictures of EEG data as input 
to classify emotions. Topographic images were obtained from the 
Relative PSD. Three emotional states—positive, negative, and neu-
tral—were classified. The results showed that an average accuracy of 
89% was obtained [15].

The main drawback of the studies in the state of the art is that 
authors utilize public datasets, which often include very few partici-
pants, such as [4], [9], and [10]. In this study, the dataset was created 
by obtaining EEG signals from 33 participants while they were pre-
sented with olfactory stimuli by presenting scented and unscented 
versions of the identical product packaging. Nonlinear characteris-
tics such as HFD [17], HPs [18], and LZC [19] were utilized to examine 
their effectiveness in olfactory stimuli classification and the analysis 
of emotional processes using EEG signals [4]. The performance of ML 
classifiers was tested using different metrics and compared with the 
authors’ previous work, which was conducted using the same data-
set but used PSDs of the EEG sub-bands [20]. The main contribution 
of this study is to compare the effectiveness of various linear and 
nonlinear features to classify the olfactory stimuli from EEG signals 
to highlight the better-performing features. The second contribu-
tion of the paper is the utilization of a CNN classifier that uses the 
heat map of relative sub-band powers to indicate the presence of 
olfactory stimuli more consistently, as the accuracy of the ML-based 
classifiers vastly differs depending on the parameters and classifica-
tion algorithms used.

II. MATERIALS AND METHODS

A. Experimental Setup
The EEG recordings were obtained from randomly chosen 20 
male and 13 female volunteers at Izmir University of Economics, 
Department of Electrical and Electronics Engineering. Subjects were 
recruited from various ages and social and economic backgrounds. 
An informed consent form was read and signed by the subjects 
before they were included in the experiment. None of the subjects 
indicated that they had conditions that would require them to be 
excluded from the study. The acquisition was done over 14 different 
channels using a widely accepted 10–20 electrode placement tech-
nique, which can be seen in Fig. 1. EMOTIV EPOC+ was used with a 
256 Hz sampling rate.

The experiment included two steps, as given in detail in [21], the 
first being an EEG recording and the second being a questionnaire. 
Two online market sites provided participants with 2 open boxes of 
identical products, one of which was scented with a perfume and 
the other unscented. Following each product, a questionnaire was 
distributed to conduct a satisfaction study. Although the recording 
setting was silent, the participants’ ears were covered to prevent 
aural inputs. Participants were instructed not to move their hands or 
talk. Furthermore, with the help of a barrier, participants’ visual fields 
were blocked to prevent visual interference.

All the feature extraction and classification steps were done using 
Python and related packages.

B. Feature Extraction
In this study, to identify the presence of olfactory stimuli in the EEG 
recordings,

i) several nonlinear features such as HFD, LZC, Hjorth complexity 
(HC), Hjorth activity (HA), and Hjorth mobility (HM) and

ii) relative sub-band powers of EEG are utilized.

Fig. 1. Electrode placement according to the 10–20 system.
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These features were previously used by other researchers in previ-
ous studies. Features such as PSD [2], LZC, LLE, HFD [4], and other 
various linear and nonlinear features in [6–8] were exploited since 
they can expose the subtle but valuable changes in the EEG sig-
nal when an olfactory stimulus is present. Furthermore, these 
features can indicate which regions of the brain are more active 
by analyzing and correlating the EEG recordings from different 
channels.

1) Higuchi’s Fractal Dimension
It is a time domain feature and a nonlinearity measure of the com-
plexity of waveforms. As discrete signals can either be examined as a 
sequence or time series, it is possible to determine the curve length 
Lm(k) for each series using (1), where N stands for the length of the 
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The mean of the curve length L(k) is obtained by averaging Lm(k) for 
all m in the manner described in (1). The HFD is calculated as the 
least squares polynomial fit of lnk, where ln denotes the natural loga-
rithm, and InL(k), after computation and array formation of all L(k) 
values [22].

The procedure requires the use of a suitable maximum value for kmax, 
as it modifies the calculated FD [23]. Several researchers, such as 
[24, 25], proposed plotting HFD values against a range of conceiv-
ably appropriate kmax values to determine where the plot plateaus to 
choose an appropriate value. It is considered that the plateau point 
represents the saturation point and a suitable value. As a result, dif-
ferent HFDs were computed using various kmax values, and it was 
determined that kmax = 14 is the most suitable.

2) Lempel–Ziv Complexity
This feature calculates the signal’s temporal complexity [19]. To cal-
culate LZC, first, a binary sequence is constructed using (2).
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The binary sequence is polled left-to-right to obtain unique 
sequences. Afterward, complexity is calculated using (3). α indicates 
the number of different symbols, and c(N) depicts a counter that 
increases gradually as a distinct sequence is detected in (3) [4].
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3) Hjorth Parameters
Computation of the time complexity of signals is done via HPs. 
Equations (4), (5), and (6) are used to calculate the HPs, which are HA, 
HM, and HC, respectively [26].
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In (4) and (5), Var(y(t)) depicts the variance of y(t). In (5) and (6), it 
d y t
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 depicts the first derivative of y(t).

4) Electroencephalogram Relative Sub-band Powers
The sub-band powers of EEG segments were utilized as another set 
of features for the classification of scented and unscented cases. The 
PSD of the EEG segments is estimated by using the Welch periodo-
gram approach [20] given in (7) and (8).
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Here i indicates the segment number, Ts is the scaling factor, and 
f k

M k Mk ! ! " #, , , .,0 1 1  are the frequency samples. The signal x(n) 

is windowed to form overlapping sections by the window function 
w(n). Discrete Fourier transform of the L segments was obtained 
first,  and then the average was calculated to form the Welch PSD 
estimate as:
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Then periodograms are used to identify the power contained in the 
following sub-bands of EEG: δ (0.5–4 Hz), θ (4–8 Hz), α (8–13 Hz), 
β  (13–30 Hz), and γ (30–40 Hz), i.e., Pδ, Pθ, Pα, Pβ, and Pγ, which are 
calculated as (9):
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where fsb is a subset of frequencies corresponding to the related sub-
band sb = {δ, θ, α, β, γ}. The total power PT in each channel is also cal-
culated as (10).
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Each sub-band’s relative power is estimated via the division of the 
sub-band power by the total channel power [27] as (11).
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The relative sub-band powers Psbr  of each channel are used in two 
classification approaches in this proposed study.



Electrica 2024; 24(1): 175-182
Akbugday et al. EEG Olfactory Detection Machine and Deep Learning

178

1. To train traditional classifiers such as k-NN, NB, SVM, and 
Random Forest (RF).

2. To generate topographic heat map images that are used to train 
a CNN.

for the classification of the EEG segments from scented and 
unscented experiments. The heat map approach was adopted from 
[28], and the algorithm utilizes interpolation to 81 electrode posi-
tions for a 10–20 electrode system. Fig. 2 depicts the heat maps 
for the θ sub-band of a channel of one subject for scented and 
unscented cases.

C. Classi"cation
In this study, both i) ML methods using the extracted features and 
ii) a DL method using topographic heat map images generated 
from the relative sub-band features to classify the EEG segments of 
scented and unscented cases were used.

1. Classi"cation via Machine Learning Methods: Feature matri-
ces were split into train and test sets following an 80%–20% 
convention, respectively. To classify olfactory stimuli, gradient 
boost (GB), naïve Bayes (NB), k-NN, decision tree (DT), SVM, and 
RF-ML algorithms were used. Extracted features were utilized 
to train models for each and all EEG channels, both individually 
and collectively. After using the default classifier parameters of 
the algorithms, grid search was employed to tune the hyper-
parameters to improve the performance of the classifiers. All the 
classifiers use 10-fold cross-validation of train and test data.

2. Classi"cation via Deep Learning: In the second approach, a 
CNN architecture was utilized to classify the topographic heat 

map images of the sub-band power features, which were first 
normalized according to (12). The generated heat maps were 
concatenated into groups of four. Since the combination of 
sub-bands was random, the concatenation process was per-
formed blindly. Instead of using each band power of each 
subject for all channels separately, it is proposed in this study 
to increase the number of data points using concatenation. 
Examples of concatenated sub-band heat map images are 
given in Fig. 3.

The CNN architecture includes two convolutional layers, where both 
layers are followed by the max-pooling layers. The kernel sizes of the 
convolutional layers were chosen as 3, the Rectified Linear Unit acti-
vation function was used. After flattening, a dense layer was imple-
mented, which was followed by a dropout layer with a 0.5 dropout 
ratio. The last layer was a dense layer with a sigmoid activation func-
tion. The total architecture can be seen in Table I.
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D. Classi"cation Metrics
Several performance metrics were utilized to compare classifier per-
formances; these metrics include measures that show an accurate 
prediction of the existence of olfactory stimuli. True negatives (TN), 
true positives (TP), false negatives (FN), and false positives (FP) were 
used to calculate accuracy, precision, recall, and F1-score, which are 
the measures utilized for assessment. To obtain these metrics, (13), 
(14), (15), and (16) are used, respectively.
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Fig. 2. (a) Heat map for the theta sub-band of a channel of one 
subject for the unscented case. (b) Heat map for the theta sub-band 
of a channel of one subject for the scented case.

Fig. 3. (a) Concatenated sub-band heat map for a scented case. (b) Concatenated sub-band heat map for an unscented case.
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III. RESULTS

A. Machine Learning Classi"cation Results
Both total and sub-band power features for all the channels were 
classified via SVM, k-NN, RF, and NB ML algorithms.

1) Classi!cation With Nonlinear Features
Table II presents the best-performing ML classifiers for nonlinear fea-
tures used. For each classifier, the average accuracy of all attributes 
was obtained and is displayed in Table III. Results indicate that the 
T8 channel has the greatest average accuracy, 73.33%, with the SVM. 
The average accuracy for the F7 and F4 channels was 72%; mean-
while, the O2 channel reached 69%. O2 has the highest average 
accuracy with 77.3% with the k-NN classifier, followed by FC6 with 
75.33%. Moreover, the AF3, F7, and T8 channels attained an aver-
age accuracy of 67%. For NB, F4 has the highest average accuracy 
of 76.3%, followed by AF4, T8, and FC5 with 72.3%, 70%, and 69% 
accuracies, respectively.

The average accuracy of the RF classifier for F7 and T8 channels was 
68.3% and 70%, respectively. The GB had a 77% accuracy for O2 and 
T8 channels and a 69.3% accuracy for O1 and F7 channels as the final 
classifier. Table III also indicates HPs offered the highest accuracy for 
T8 at 80%, while, the LZC outperformed the others at 93% for the F4 
channel using SVM. Using the k-NN classifier, the HPs obtained up to 
92% accuracy for the O2 channel and 92% accuracy for the FC6 chan-
nel when using the LZC feature.

2) Classi!cation With Relative Sub-band Powers
Considering the previous work of the authors [20], the RF algorithm 
was shown to be the most accurate and precise of all the classifiers 
tested, scoring 92% and 93% accuracy and precision, respectively. 
The accuracy and precision of SVM with a radial basis function ker-
nel, in comparison, have achieved up to 83% and 88%, respectively, 
while k-NN, where k = 5, has reached up to 85%. The best classifi-
cation performance was shown by the FC6 channel’s γ sub-band 
power, which has an accuracy of 92%.

B. Deep Learning Classi"cation Results
The augmented data was trained for 5 epochs, and Table IV shows 
the results of the proposed CNN architecture. The accuracy started at 
50% and climbed up to 91.6%, while the loss decreased from 22.21 
to 0.22. The precision was 49.29% in the beginning and finalized at 
89.53%. Finally, the recall value increased to 93.94%.

IV. DISCUSSION

In the authors’ previous study, classification with sub-band pow-
ers indicated that RF was the most accurate classifier and that the 
β and γ sub-bands of the F3, F4, and FC6 channels produced the 
best results [20]. The maximum accuracy for the F4 channel was 
86% using all bands, whereas γ and β accuracies were 57% and 50%, 
respectively. FC6 had 92% accuracy in the γ band, which was fol-
lowed by 75% accuracy in the β band [20]. Previously, classification 
with nonlinear features [21] revealed that the best result was 93% 
accuracy for the F4 channel with the NB classifier. The average accu-
racy for the F4, F7, O2, and T8 channels was 84.7%, 69.3%, 74.3%, and 
76.7%, respectively.

The CNN results given in Table IV show that the network was trained 
appropriately, as the decrease in loss values was consistent over five 
epochs. Furthermore, the accuracy reached over 5 epochs outper-
forms most of the ML classifiers. This indicates that heat maps are an 
effective way to train CNNs to detect the presence olfactory stimuli 
in the EEG recordings.

According to the classification results of the nonlinear features given 
in Table II, T8, O2, F7, and F4 channels gave the highest accuracy 
results. Moreover, HPs, HFDs, and LZC features produced consistent 
results across different classifiers, as can be seen in Table III. On the 
other hand, the LZC feature provided better results consistently 
across all EEG channels. Since LZC can calculate the temporal com-
plexity of a signal, it emerged as a prominent feature in this study. 
The CNN accuracy was 91.6%, while the best result of the sub-band 

TABLE I. ARCHITECTURE OF THE CONVOLUTIONAL NEURAL NETWORKS 
MODEL

Layer Type Output Shape Number of Parameters

Conv2D (None, 682, 539, 32) 896

MaxPooling2D (None, 341, 269, 32) 0

Conv2D (None, 339, 267, 64) 18496

MaxPooling2D (None, 169, 133, 64) 0

Flatten (None, 1438528) 0

Dense (None, 128) 184131712

Dropout (None, 128) 0

Dense (None, 1) 129

TABLE II. BEST-PERFORMING CLASSIFIERS FOR ALL NONLINEAR FEATURES

Classi"er NB RF GB

EEG Channel/ 
Performance Metric Accuracy Precision Recall F-1 Score Accuracy Precision Recall F-1 Score Accuracy Precision Recall F-1 Score

F4 0.93 0.92 0.94 0.93 0.79 0.78 0.74 0.75 0.79 0.78 0.74 0.75

F7 0.58 0.61 0.58 0.56 0.75 0.76 0.75 0.75 0.75 0.76 0.75 0.75

O2 0.69 0.75 0.78 0.69 0.85 0.83 0.89 0.84 0.69 0.75 0.78 0.69

T8 0.8 0.83 0.83 0.8 0.7 0.7 0.71 0.7 0.8 0.83 0.83 0.8

NB, naïve Bayes; RF, random forest; DT, decision tree; GB, gradient boost.
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power classification was 92% accuracy for the RF classifier. Although 
the results of the CNN seemed superior to those of the ML classifier, it 
should be noted that the number of samples was limited in the case 
of the DL classification. Thus, different sub-bands such as α, β, and γ 

were fused to augment the data so that the CNN could be trained 
better.

Considering the results provided in Table II, the best discriminating 
channel for olfactory stimulus is F4. This supports previous studies 
such as, [29] as the orbitofrontal cortex is a tertiary olfactory struc-
ture. Thus, it is demonstrated that it is more effective to focus on EEG 
channels related to the orbitofrontal cortex, such as F4, to detect 
olfactory stimuli when training artificial intelligence classifiers.

Table V provides a comparison with the previous notable studies, 
such as [4], [9], and [10] the proposed methods in this study, which 
produced on-par and better results depending on the compared 
aspect, such as the significance of the channel or features. Since in 
this study the data is collected from far more people than in the pre-
vious studies, it can be argued that the results of this study general-
ize better than the previously published ones.

TABLE IV. CONVOLUTIONAL NEURAL NETWORK CLASSIFIER RESULTS

Epoch Accuracy Precision Recall Loss

1 0.5 0.4929 0.5227 221.461

2 0.5746 0.5643 0.5985 0.6872

3 0.7929 0.8097 0.7576 0.5253

4 0.8377 0.8365 0.8333 0.3614

5 0.9160 0.8953 0.9394 0.2213

TABLE V. COMPARISON OF RESULTS WITH PREVIOUS WORKS

Study Dataset Size Features Used Classi"cation Type Classi"er Accuracy Results

[2] 14 Subjects PSD, ApEn Odor Identi!cation k-NN, SVM, XGBoost 77.6%

[4] 5 Subjects HFD, LLE, ApEn, LZC Subject-speci!c
Cross-subject

LDA 92.75%
86.9%

[9] 5 Subjects EEG Sub-band Powers Subject-speci!c
Cross-subject

SVM ≈50.0%–100.0%
≈50.0%–100.0%

[10] 5 Subjects EEG Sub-band Powers, Statistical data, HP, 
Autoregressive Model

Odor Identi!cation
Subject Identi!cation

k-NN, NB 52.95%–99.34%
47.68%–97.48%

Proposed
Method

33 Subjects EEG Sub-band Power Heatmaps Odor Identi!cation CNN 91.60%

TABLE III. BEST CLASSIFIER PERFORMANCES FOR ALL NONLINEAR FEATURES

Feature Channel/Classi"er SVM k-NN NB RF DT GB

HPs F4 0.79 0.79 0.79 0.86 0.71 0.79

F7 0.75 0.75 0.75 0.75 0.58 0.75

O2 0.69 0.92 0.62 0.77 0.69 0.92

P8 0.64 0.64 0.57 0.71 0.79 0.79

T8 0.8 0.7 0.8 0.7 0.6 0.8

HFD AF3 0.66 0.83 0.5 0.83 0.83 0.83

AF4 0.66 0.67 0.75 0.83 0.83 0.75

F7 0.75 0.75 0.75 0.67 0.67 0.75

T8 0.7 0.7 0.7 0.8 0.8 0.8

LZC AF4 0.75 0.66 0.75 0.75 0.58 0.67

F4 0.93 0.86 0.86 0.93 0.64 0.71

FC6 0.58 0.92 0.67 0.58 0.67 0.67

O2 0.77 0.77 0.77 0.77 0.69 0.77

T8 0.7 0.6 0.7 0.7 0.5 0.5

SVM, support vector machine; k-NN, k-nearest neighbors; NB, naïve Bayes; RF, random forest; DT, decision tree; GB, gradient boost.
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V. CONCLUSION

This research examined how EEG signals can be used to identify 
olfactory stimuli in the brain. First, the nonlinear features HA, HM, 
HC, HFD, and LZC were classified using conventional ML classifiers. 
Then, sub-band powers were categorized using a CNN architecture 
in comparison to the authors’ previous work, in which sub-band 
powers were classified directly as a 1D series. It should be noted that 
the nonlinear features and sub-band powers were also compared to 
assess the effectiveness of nonlinear features. Moreover, to evaluate 
the efficacy of nonlinear features, the nonlinear features and sub-
band powers were compared.

Overall, LZC complexity was found to be the most prominent fea-
ture in classifying the presence of olfactory stimuli, highlighting 
its ability to calculate the temporal complexity of a signal. Another 
finding is that EEG channels related to the orbitofrontal cortex are 
more discriminative than others, such as the F4 channel. Moreover, 
to the best of the authors’ knowledge, CNN classification of the 
heat maps to detect olfactory stimulus was not done by any other 
researchers previously. This study demonstrates that topographic 
heat maps can represent the response of the brain to olfactory stim-
uli accurately.

In future studies, further parameter optimization of the ML classifiers 
and the CNN will be done utilizing different searching algorithms. 
The layer structure of the CNN used will also be further exploited 
to better suit the data and improve the classification performance. 
Additionally, several other DL methods, such as transfer learning, will 
be used to classify the heat maps to investigate their effectiveness in 
terms of olfactory stimulus detection.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – B.A., S.P.A., R.S, A.A.; Design – S.P.A., R.S.; 
Supervision – A.A., S.U.; Funding – R.S., A.A.; Materials – R.S., A.A.; Data 
Collection and/or Processing – B.A., S.P.A., R.S.; Analysis and/or Interpretation – 
B.A., S.P.A.; Literature Review – B.A., S.P.A.; Writing – B.A., S.P.A, A.A.; Critical 
Review – A.A., S.U.

Declaration of Interests: The authors have no conflict of interest to 
declare.

Funding: This study was supported by Izmir University of Economics, 
Scientific Research Project Coordination Unit: Project No. BAP2022-07

REFERENCES

1. M. Cabanac, “What is emotion?,” Behav. Processes, vol. 60, no. 2, pp. 69–83, 
2002. [CrossRef]

2. M. S. Seet et al., “Wearable EEG entropy and spectral measures for clas-
sification of consumer reward-based evaluation of odor stimuli,” 2021 
43rd Annual International Conference of the IEEE Engineering in Medi-
cine & Biology Society (EMBC), 2021. [CrossRef]

3. A. Bazzani, S. Ravaioli, L. Trieste, U. Faraguna, and G. Turchetti, “Is EEG 
suitable for marketing research? A systematic review,” Front. Neurosci., 
vol. 14, 594566, 2020. [CrossRef]

4. K. Ezzatdoost, H. Hojjati, and H. Aghajan, “Decoding olfactory stimuli in 
EEG data using nonlinear features: A pilot study,” J. Neurosci. Methods, 
vol. 341, p. 108780, 2020. [CrossRef]

5. H. R. Hou, X. N. Zhang, and Q. H. Meng, “Odor-induced emotion recogni-
tion based on average frequency band division of EEG signals,” J. Neu-
rosci. Methods, vol. 334, p. 108599, 2020. [CrossRef]

6. H.-R. Hou, Q.-H. Meng, and B. Sun, “A triangular hashing learning 
approach for olfactory EEG signal recognition,” Applied Soft Computing, 
vol. 118, pp. 108471–108471, 2022. [CrossRef]

7. X. N. Zhang, Q. H. Meng, M. Zeng, and H. R. Hou, “Decoding olfactory EEG 
signals for different odor stimuli identification using wavelet-spatial 
domain feature,” J. Neurosci. Methods, vol. 363, p. 109355, 2021. [CrossRef]

8. N. I. Abbasi, R. Bose, A. Bezerianos, N. V. Thakor, and A. Dragomir, “EEG-
based classification of olfactory response to pleasant stimuli,” 2019 41st 
Annual International Conference of the IEEE Engineering in Medicine 
and Biology Society (EMBC), 2019. [CrossRef]

9. E. Kroupi, A. Yazdani, J.-M. Vesin, and T. Ebrahimi, “EEG correlates of 
pleasant and unpleasant odor perception,” ACM Trans. Multimedia Com-
put. Commun. Appl., vol. 11, no. 1s, pp. 1–17, 2014. [CrossRef]

10. O. Aydemir, “Odor and subject identification using electroencephalog-
raphy reaction to olfactory,” Traitement Signal, vol. 37, no. 5, pp. 799–805, 
2020. [CrossRef]

11. Z. Gao, X. Wang, Y. Yang, Y. Li, K. Ma, and G. Chen, “A channel-fused dense 
convolutional network for EEG-based emotion recognition,” IEEE Trans. 
Cogn. Dev. Syst., vol. 13, no. 4, pp. 945–954, 2021. [CrossRef]

12. A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroen-
cephalogram (EEG) classification tasks: A review,” J. Neural Eng., vol. 16, 
no. 3, p. 031001, 2019. [CrossRef]

13. Md. A. Rahman, M. S. Uddin, and M. Ahmad, “Modeling and classification 
of voluntary and imagery movements for brain–computer interface 
from fNIR and EEG signals through convolutional neural network,” 
Health Inf. Sci. Syst., vol. 7, no. 1, 2019. [CrossRef]

14. M. Mahmud, M. S. Kaiser, A. Hussain, and S. Vassanelli, “Applications of 
deep learning and reinforcement learning to Biological Data,” IEEE 
Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2063–2079, 2018. 
[CrossRef]

15. Md. A. Rahman, A. Anjum, Md. M. H. Milu, F. Khanam, M. S. Uddin, and 
Md. N. Mollah, “Emotion recognition from EEG-based relative power 
spectral topography using convolutional neural network,” Array, vol. 11, 
p. 100072, 2021. [CrossRef]

16. G. Xiao, M. Shi, M. Ye, B. Xu, Z. Chen, and Q. Ren, “4D attention-based 
neural network for EEG emotion recognition,” Cogn. Neurodyn., vol. 16, 
no. 4, 805–818, 2022. [CrossRef]

17. T. Higuchi, “Approach to an irregular time series on the basis of the 
fractal theory,” Phys. D Nonlinear Phenom., vol. 31, no. 2, pp. 277–283, 
1988. [CrossRef]

18. B. Hjorth, “EEG analysis based on time domain properties,” Electroen-
cephalogr. Clin. Neurophysiol., vol. 29, no. 3, pp. 306–310, 1970. 
[CrossRef]

19. A. Lempel, and J. Ziv, “On the complexity of finite sequences,” IEEE Trans. 
Inf. Theor., vol. 22, no. 1, pp. 75–81, 1976. [CrossRef]

20. S. Pehlivan, B. Akbugday, A. Akan, and R. Sadighzadeh, “Detection of 
olfactory stimulus from EEG signals for neuromarketing applications,” 
2022 30th Signal Processing and Communications Applications Confer-
ence (SIU), Safranbolu, Turkey, pp. 1–4, 2022. [CrossRef]

21. B. Akbugday, A. Akan, S. Pehlivan, and R. Sadighzadeh, “An assessment 
of linear and nonlinear features for detecting olfactory stimulus in EEG,” 
2022 Medical Technologies Congress (TIPTEKNO), Antalya, Turkey, 
pp. 1–4, 2022. [CrossRef]

22. C.-T. Shi, “Signal pattern recognition based on fractal features and 
machine learning,” Appl. Sci., vol. 8, no. 8, p. 1327, 2018. [CrossRef]

23. C. F. Vega, and J. Noel, “Parameters analyzed of Higuchi’s fractal dimen-
sion for EEG brain signals,” 2015 Signal Processing Symposium 
(SPSympo), Debe, Poland, 2015, 2015, pp. 1–5. [CrossRef]

24. W. Klonowski, E. Olejarczyk, and R. Stepien, “‘Epileptic seizures’ in eco-
nomic organism”, Physica A: Statistical Mechanics and its Applications, 
vol. 342, no. 3–4, pp. 701–707, 2004. [CrossRef]

25. C. M. Gómez, A. Mediavilla, R. Hornero, D. Abásolo, and A. Fernández, 
“Use of the Higuchi’s fractal dimension for the analysis of MEG record-
ings from Alzheimer’s disease patients,”, Med. Eng. Phys., vol. 31, no. 3, 
pp. 306–313, Apr. 2009. [CrossRef]

26. M. S. Safi, and S. M. M. Safi, “Early detection of Alzheimer’s disease from 
EEG signals using Hjorth parameters,” Biomed. Signal Process. Control, 
vol. 65, p. 102338, 2021. [CrossRef]

27. A. Alkan, and M. K. Kiymik, “Comparison of AR and Welch methods in 
epileptic seizure detection,” J. Med. Syst., vol. 30, no. 6, pp. 413–419, 
2006. [CrossRef]

28. “Topographic EEG/MEG plot,” Available: www.mathworks.com. https ://
ww w.mat hwork s.com /matl abcen tral/ filee xchan ge/72 729-t opogr aphic-
eeg- meg-p lot. [accessed: May 17, 2023].

29. Y. Soudry, C. Lemogne, D. Malinvaud, S. M. Consoli, and P. Bonfils, “Olfac-
tory system and emotion: Common substrates,” Eur. Ann. Orl. Head Neck 
Dis., vol. 128, no. 1, pp. 18–23, 2011. [CrossRef]

https://doi.org/10.1016/s0376-6357(02)00078-5
https://doi.org/10.1109/EMBC46164.2021.9631055
https://doi.org/10.3389/fnins.2020.594566
https://doi.org/10.1016/j.jneumeth.2020.108780
https://doi.org/10.1016/j.jneumeth.2020.108599
https://doi.org/10.1016/j.asoc.2022.108471
https://doi.org/10.1016/j.jneumeth.2021.109355
https://doi.org/10.1109/EMBC.2019.8857673
https://doi.org/10.1145/2637287
https://doi.org/10.18280/ts.370512
https://doi.org/10.1109/TCDS.2020.2976112
https://doi.org/10.1088/1741-2552/ab0ab5
https://doi.org/10.1007/s13755-019-0081-5
https://doi.org/10.1109/TNNLS.2018.2790388
https://doi.org/10.1016/j.array.2021.100072
https://doi.org/10.1007/s11571-021-09751-5
https://doi.org/10.1016/0167-2789(88)90081-4
https://doi.org/10.1016/0013-4694(70)90143-4
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1109/SIU55565.2022.9864841
https://doi.org/10.1109/TIPTEKNO56568.2022.9960190
https://doi.org/10.3390/app8081327
https://doi.org/10.1109/SPS.2015.7168285
https://doi.org/10.1016/j.physa.2004.05.045
https://doi.org/10.1016/j.medengphy.2008.06.010
https://doi.org/10.1016/j.bspc.2020.102338
https://doi.org/10.1007/s10916-005-9001-0
www.mathworks.com
https://www.mathworks.com/matlabcentral/fileexchange/72729-topographic-eeg-meg-plot
https://www.mathworks.com/matlabcentral/fileexchange/72729-topographic-eeg-meg-plot
https://www.mathworks.com/matlabcentral/fileexchange/72729-topographic-eeg-meg-plot
https://doi.org/10.1016/j.anorl.2010.09.007


Electrica 2024; 24(1): 175-182
Akbugday et al. EEG Olfactory Detection Machine and Deep Learning

182

Burak Akbugday received the B.Sc. degree from Zonguldak Bulent Ecevit University, Zonguldak, in 2017 in biomedical 
engineering. Having worked on the development of hardware and software of embedded systems, mobile and desktop 
applications as well as signal processing throughout his academic career, he published several related papers. Currently, 
he works as a research assistant in the Department of Electrical and Electronics Engineering and continues to work on 
biomedical signal analysis using machine and deep learning methods as a Ph.D. student in Izmir University of Economics.

Sude Pehlivan received the B.Sc. degree from İzmir Katip Celebi University, İzmir, in 2019 in Biomedical Engineering. She 
completed her undergraduate thesis on defining obstacles on the pedestrian path for visually impaired individuals. She 
continues to work on biological signal and image processing, and deep learning. Currently, she is a Ph.D. candidate in the 
İzmir University of Economics’ Electrical and Electronics program and works as a research assistant at the İzmir University 
of Economics’ Department of Biomedical Engineering.

Reza Sadighzadeh received the B.Sc. degree from the University of Tabriz, Tabriz in 2000 in Electronics Engineering. He 
received the M.Sc. degree from the University of Tehran, Tehran in 2008 in Strategic Management. He received an MBA 
degree from Istanbul University School of Business in 2019. Currently, he is a Ph.D. candidate in Izmir Katip Celebi University, 
Department of Business Administration. His current research interests include Sensory Marketing, Scent Marketing, and 
Neuromarketing.

Aydin Akan received the B.Sc. degree from the University of Uludag, Bursa, in 1988, the M.Sc. degree from the Technical 
University of Istanbul, Turkey in 1991, and the Ph.D. degree from the University of Pittsburgh, Pittsburgh, PA, USA, in 
1996, all in Electronics Engineering. He has been with the Department of Electrical and Electronics Engineering, Istanbul 
University between 1996 and 2017, where he was granted the Associate Professor position in 2001, and the full Professor 
position in 2006. He was appointed as Professor and Chair of the Department of Biomedical Engineering, Izmir Katip 
Celebi University between March 2017 and January 2020 where he served as the Dean of the School of Engineering 
and Architecture. Currently, he is a Professor and Chair of the Department of Electrical and Electronics Engineering, Izmir 
University of Economics. His current research interests include non-stationary signal processing, time-frequency signal 
analysis, and machine learning methods applied to wireless communications and biomedical engineering. He is a senior 
member of the IEEE Signal Processing (SP) and Engineering in Medicine and Biology (EMB) Societies, Chair of IEEE-EMB 
Turkey Section, and Chair of the European Signal Processing Association (EURASIP) Biomedical Image and Signal Analytics 
(BISA) Technical Area Committee. He is an Associate Editor of the Elsevier Digital Signal Processing Journal.

Sevtap Unal is a Professor of Marketing in the Economics and Business Administration Faculty at Izmir Katip Celebi 
University in Turkey. During 2015-2016, she was a visiting Professor at the University of Texas at Dallas. Her research inter-
ests lie in the areas of consumer behavior, consumer psychology, and marketing research. She has published numerous 
books, articles, and conference papers in national and international journals and conferences. She serves as editor and 
reviewer for national and international journals. In addition to her 17 years of teaching experience, she has also partici-
pated in consulting and training projects.


